glibc/nptl/sysdeps/unix/sysv/linux/mq_notify.c

311 lines
8.5 KiB
C

/* Copyright (C) 2004-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contribute by Ulrich Drepper <drepper@redhat.com>, 2004.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <mqueue.h>
#include <pthread.h>
#include <signal.h>
#include <stdlib.h>
#include <string.h>
#include <sysdep.h>
#include <unistd.h>
#include <sys/socket.h>
#include <not-cancel.h>
#include <kernel-features.h>
#include <nptl/pthreadP.h>
#ifdef __NR_mq_notify
/* Defined in the kernel headers: */
#define NOTIFY_COOKIE_LEN 32 /* Length of the cookie used. */
#define NOTIFY_WOKENUP 1 /* Code for notifcation. */
#define NOTIFY_REMOVED 2 /* Code for closed message queue
of de-notifcation. */
/* Data structure for the queued notification requests. */
union notify_data
{
struct
{
void (*fct) (union sigval); /* The function to run. */
union sigval param; /* The parameter to pass. */
pthread_attr_t *attr; /* Attributes to create the thread with. */
/* NB: on 64-bit machines the struct as a size of 24 bytes. Which means
byte 31 can still be used for returning the status. */
};
char raw[NOTIFY_COOKIE_LEN];
};
/* Keep track of the initialization. */
static pthread_once_t once = PTHREAD_ONCE_INIT;
/* The netlink socket. */
static int netlink_socket = -1;
/* Barrier used to make sure data passed to the new thread is not
resused by the parent. */
static pthread_barrier_t notify_barrier;
/* Modify the signal mask. We move this into a separate function so
that the stack space needed for sigset_t is not deducted from what
the thread can use. */
static int
__attribute__ ((noinline))
change_sigmask (int how, sigset_t *oss)
{
sigset_t ss;
sigfillset (&ss);
return pthread_sigmask (how, &ss, oss);
}
/* The function used for the notification. */
static void *
notification_function (void *arg)
{
/* Copy the function and parameter so that the parent thread can go
on with its life. */
volatile union notify_data *data = (volatile union notify_data *) arg;
void (*fct) (union sigval) = data->fct;
union sigval param = data->param;
/* Let the parent go. */
(void) pthread_barrier_wait (&notify_barrier);
/* Make the thread detached. */
(void) pthread_detach (pthread_self ());
/* The parent thread has all signals blocked. This is probably a
bit surprising for this thread. So we unblock all of them. */
(void) change_sigmask (SIG_UNBLOCK, NULL);
/* Now run the user code. */
fct (param);
/* And we are done. */
return NULL;
}
/* Helper thread. */
static void *
helper_thread (void *arg)
{
while (1)
{
union notify_data data;
ssize_t n = recv (netlink_socket, &data, sizeof (data),
MSG_NOSIGNAL | MSG_WAITALL);
if (n < NOTIFY_COOKIE_LEN)
continue;
if (data.raw[NOTIFY_COOKIE_LEN - 1] == NOTIFY_WOKENUP)
{
/* Just create the thread as instructed. There is no way to
report a problem with creating a thread. */
pthread_t th;
if (__builtin_expect (pthread_create (&th, data.attr,
notification_function, &data)
== 0, 0))
/* Since we passed a pointer to DATA to the new thread we have
to wait until it is done with it. */
(void) pthread_barrier_wait (&notify_barrier);
}
else if (data.raw[NOTIFY_COOKIE_LEN - 1] == NOTIFY_REMOVED)
/* The only state we keep is the copy of the thread attributes. */
free (data.attr);
}
return NULL;
}
static void
reset_once (void)
{
once = PTHREAD_ONCE_INIT;
}
static void
init_mq_netlink (void)
{
#ifdef SOCK_CLOEXEC
# ifndef __ASSUME_SOCK_CLOEXEC
static int have_sock_cloexec;
# else
# define have_sock_cloexec 1
# endif
#else
# define have_sock_cloexec -1
# define SOCK_CLOEXEC 0
#endif
/* This code might be called a second time after fork(). The file
descriptor is inherited from the parent. */
if (netlink_socket == -1)
{
/* Just a normal netlink socket, not bound. */
if (have_sock_cloexec >= 0)
{
netlink_socket = socket (AF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, 0);
#if defined SOCK_CLOEXEC && !defined __ASSUME_SOCK_CLOEXEC
if (have_sock_cloexec == 0)
have_sock_cloexec = (netlink_socket != -1 || errno != EINVAL
? 1 : -1);
#endif
}
if (have_sock_cloexec < 0)
netlink_socket = socket (AF_NETLINK, SOCK_RAW, 0);
/* No need to do more if we have no socket. */
if (netlink_socket == -1)
return;
/* Make sure the descriptor is closed on exec. */
if (have_sock_cloexec < 0
&& fcntl (netlink_socket, F_SETFD, FD_CLOEXEC) != 0)
goto errout;
}
int err = 1;
/* Initialize the barrier. */
if (__builtin_expect (pthread_barrier_init (&notify_barrier, NULL, 2) == 0,
0))
{
/* Create the helper thread. */
pthread_attr_t attr;
(void) pthread_attr_init (&attr);
(void) pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED);
/* We do not need much stack space, the bare minimum will be enough. */
(void) pthread_attr_setstacksize (&attr, __pthread_get_minstack (&attr));
/* Temporarily block all signals so that the newly created
thread inherits the mask. */
sigset_t oss;
int have_no_oss = change_sigmask (SIG_BLOCK, &oss);
pthread_t th;
err = pthread_create (&th, &attr, helper_thread, NULL);
/* Reset the signal mask. */
if (!have_no_oss)
pthread_sigmask (SIG_SETMASK, &oss, NULL);
(void) pthread_attr_destroy (&attr);
if (err == 0)
{
static int added_atfork;
if (added_atfork == 0
&& pthread_atfork (NULL, NULL, reset_once) != 0)
{
/* The child thread will call recv() which is a
cancellation point. */
(void) pthread_cancel (th);
err = 1;
}
else
added_atfork = 1;
}
}
if (err != 0)
{
errout:
close_not_cancel_no_status (netlink_socket);
netlink_socket = -1;
}
}
/* Register notification upon message arrival to an empty message queue
MQDES. */
int
mq_notify (mqd_t mqdes, const struct sigevent *notification)
{
/* Make sure the type is correctly defined. */
assert (sizeof (union notify_data) == NOTIFY_COOKIE_LEN);
/* Special treatment needed for SIGEV_THREAD. */
if (notification == NULL || notification->sigev_notify != SIGEV_THREAD)
return INLINE_SYSCALL (mq_notify, 2, mqdes, notification);
/* The kernel cannot directly start threads. This will have to be
done at userlevel. Since we cannot start threads from signal
handlers we have to create a dedicated thread which waits for
notifications for arriving messages and creates threads in
response. */
/* Initialize only once. */
pthread_once (&once, init_mq_netlink);
/* If we cannot create the netlink socket we cannot provide
SIGEV_THREAD support. */
if (__builtin_expect (netlink_socket == -1, 0))
{
__set_errno (ENOSYS);
return -1;
}
/* Create the cookie. It will hold almost all the state. */
union notify_data data;
memset (&data, '\0', sizeof (data));
data.fct = notification->sigev_notify_function;
data.param = notification->sigev_value;
if (notification->sigev_notify_attributes != NULL)
{
/* The thread attribute has to be allocated separately. */
data.attr = (pthread_attr_t *) malloc (sizeof (pthread_attr_t));
if (data.attr == NULL)
return -1;
memcpy (data.attr, notification->sigev_notify_attributes,
sizeof (pthread_attr_t));
}
/* Construct the new request. */
struct sigevent se;
se.sigev_notify = SIGEV_THREAD;
se.sigev_signo = netlink_socket;
se.sigev_value.sival_ptr = &data;
/* Tell the kernel. */
int retval = INLINE_SYSCALL (mq_notify, 2, mqdes, &se);
/* If it failed, free the allocated memory. */
if (__builtin_expect (retval != 0, 0))
free (data.attr);
return retval;
}
#else
# include <rt/mq_notify.c>
#endif