mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-03 08:11:08 +00:00
122 lines
3.5 KiB
C
122 lines
3.5 KiB
C
/* Compute complex natural logarithm.
|
|
Copyright (C) 1997-2016 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
/* To avoid spurious underflows, use this definition to treat IBM long
|
|
double as approximating an IEEE-style format. */
|
|
#if LDBL_MANT_DIG == 106
|
|
# undef LDBL_EPSILON
|
|
# define LDBL_EPSILON 0x1p-106L
|
|
#endif
|
|
|
|
__complex__ long double
|
|
__clogl (__complex__ long double x)
|
|
{
|
|
__complex__ long double result;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
|
|
{
|
|
/* Real and imaginary part are 0.0. */
|
|
__imag__ result = signbit (__real__ x) ? M_PIl : 0.0;
|
|
__imag__ result = __copysignl (__imag__ result, __imag__ x);
|
|
/* Yes, the following line raises an exception. */
|
|
__real__ result = -1.0 / fabsl (__real__ x);
|
|
}
|
|
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
|
|
{
|
|
/* Neither real nor imaginary part is NaN. */
|
|
long double absx = fabsl (__real__ x), absy = fabsl (__imag__ x);
|
|
int scale = 0;
|
|
|
|
if (absx < absy)
|
|
{
|
|
long double t = absx;
|
|
absx = absy;
|
|
absy = t;
|
|
}
|
|
|
|
if (absx > LDBL_MAX / 2.0L)
|
|
{
|
|
scale = -1;
|
|
absx = __scalbnl (absx, scale);
|
|
absy = (absy >= LDBL_MIN * 2.0L ? __scalbnl (absy, scale) : 0.0L);
|
|
}
|
|
else if (absx < LDBL_MIN && absy < LDBL_MIN)
|
|
{
|
|
scale = LDBL_MANT_DIG;
|
|
absx = __scalbnl (absx, scale);
|
|
absy = __scalbnl (absy, scale);
|
|
}
|
|
|
|
if (absx == 1.0L && scale == 0)
|
|
{
|
|
__real__ result = __log1pl (absy * absy) / 2.0L;
|
|
math_check_force_underflow_nonneg (__real__ result);
|
|
}
|
|
else if (absx > 1.0L && absx < 2.0L && absy < 1.0L && scale == 0)
|
|
{
|
|
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
|
|
if (absy >= LDBL_EPSILON)
|
|
d2m1 += absy * absy;
|
|
__real__ result = __log1pl (d2m1) / 2.0L;
|
|
}
|
|
else if (absx < 1.0L
|
|
&& absx >= 0.5L
|
|
&& absy < LDBL_EPSILON / 2.0L
|
|
&& scale == 0)
|
|
{
|
|
long double d2m1 = (absx - 1.0L) * (absx + 1.0L);
|
|
__real__ result = __log1pl (d2m1) / 2.0L;
|
|
}
|
|
else if (absx < 1.0L
|
|
&& absx >= 0.5L
|
|
&& scale == 0
|
|
&& absx * absx + absy * absy >= 0.5L)
|
|
{
|
|
long double d2m1 = __x2y2m1l (absx, absy);
|
|
__real__ result = __log1pl (d2m1) / 2.0L;
|
|
}
|
|
else
|
|
{
|
|
long double d = __ieee754_hypotl (absx, absy);
|
|
__real__ result = __ieee754_logl (d) - scale * M_LN2l;
|
|
}
|
|
|
|
__imag__ result = __ieee754_atan2l (__imag__ x, __real__ x);
|
|
}
|
|
else
|
|
{
|
|
__imag__ result = __nanl ("");
|
|
if (rcls == FP_INFINITE || icls == FP_INFINITE)
|
|
/* Real or imaginary part is infinite. */
|
|
__real__ result = HUGE_VALL;
|
|
else
|
|
__real__ result = __nanl ("");
|
|
}
|
|
|
|
return result;
|
|
}
|
|
weak_alias (__clogl, clogl)
|