glibc/sysdeps/ieee754/dbl-64/e_j1.c
Joseph Myers 09220e6634 Avoid uninitialized warnings in Bessel functions.
math/Makefile currently has:

  # The fdlibm code generates a lot of these warnings but is otherwise clean.
  override CFLAGS += -Wno-uninitialized

This is of course undesirable; warnings should be disabled as narrowly
as possible.  To remove this override, we need to fix files that
generate such warnings, or put warning-disabling pragmas in them.
This patch does so for Bessel function implementations, one of the
cases that have the warnings if the override is removed.  The warnings
arise because functions set pointer variables p and q only for certain
values of the function argument, then use them unconditionally.  As
the static functions in question only get called for arguments that
satisfy the last condition in the if/else chain, the natural fix is to
change the last "else if" to just "else", which this patch does.  (The
ldbl-128 / ldbl-128ibm implementation of these functions is
substantially different and looks like it already does use "else" in
the last case in the nearest corresponding code.)

Tested for x86_64 and x86.

	* sysdeps/ieee754/dbl-64/e_j0.c (pzero): Change last case for
	setting p and q from "else if" to "else".
	(qzero): Likewise.
	* sysdeps/ieee754/dbl-64/e_j1.c (pone): Likewise.
	(qone): Likewise.
	* sysdeps/ieee754/flt-32/e_j0f.c (pzerof): Likewise.
	(qzerof): Likewise.
	* sysdeps/ieee754/flt-32/e_j1f.c (ponef): Likewise.
	(qonef): Likewise.
	* sysdeps/ieee754/ldbl-96/e_j0l.c (pzero): Likewise.
	(qzero): Likewise.
	* sysdeps/ieee754/ldbl-96/e_j1l.c (pone): Likewise.
	(qone): Likewise.
2015-02-26 21:49:19 +00:00

460 lines
15 KiB
C

/* @(#)e_j1.c 5.1 93/09/24 */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/26,
for performance improvement on pipelined processors.
*/
/* __ieee754_j1(x), __ieee754_y1(x)
* Bessel function of the first and second kinds of order zero.
* Method -- j1(x):
* 1. For tiny x, we use j1(x) = x/2 - x^3/16 + x^5/384 - ...
* 2. Reduce x to |x| since j1(x)=-j1(-x), and
* for x in (0,2)
* j1(x) = x/2 + x*z*R0/S0, where z = x*x;
* (precision: |j1/x - 1/2 - R0/S0 |<2**-61.51 )
* for x in (2,inf)
* j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x1)-q1(x)*sin(x1))
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* as follow:
* cos(x1) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x1) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (sin(x) + cos(x))
* (To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.)
*
* 3 Special cases
* j1(nan)= nan
* j1(0) = 0
* j1(inf) = 0
*
* Method -- y1(x):
* 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
* 2. For x<2.
* Since
* y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x^3-...)
* therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
* We use the following function to approximate y1,
* y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x^2
* where for x in [0,2] (abs err less than 2**-65.89)
* U(z) = U0[0] + U0[1]*z + ... + U0[4]*z^4
* V(z) = 1 + v0[0]*z + ... + v0[4]*z^5
* Note: For tiny x, 1/x dominate y1 and hence
* y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
* 3. For x>=2.
* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
* where x1 = x-3*pi/4. It is better to compute sin(x1),cos(x1)
* by method mentioned above.
*/
#include <errno.h>
#include <math.h>
#include <math_private.h>
static double pone (double), qone (double);
static const double
huge = 1e300,
one = 1.0,
invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
tpi = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
/* R0/S0 on [0,2] */
R[] = { -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
-1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
4.96727999609584448412e-08 }, /* 0x3E6AAAFA, 0x46CA0BD9 */
S[] = { 0.0, 1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
1.23542274426137913908e-11 }; /* 0x3DAB2ACF, 0xCFB97ED8 */
static const double zero = 0.0;
double
__ieee754_j1 (double x)
{
double z, s, c, ss, cc, r, u, v, y, r1, r2, s1, s2, s3, z2, z4;
int32_t hx, ix;
GET_HIGH_WORD (hx, x);
ix = hx & 0x7fffffff;
if (__glibc_unlikely (ix >= 0x7ff00000))
return one / x;
y = fabs (x);
if (ix >= 0x40000000) /* |x| >= 2.0 */
{
__sincos (y, &s, &c);
ss = -s - c;
cc = s - c;
if (ix < 0x7fe00000) /* make sure y+y not overflow */
{
z = __cos (y + y);
if ((s * c) > zero)
cc = z / ss;
else
ss = z / cc;
}
/*
* j1(x) = 1/sqrt(pi) * (P(1,x)*cc - Q(1,x)*ss) / sqrt(x)
* y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
*/
if (ix > 0x48000000)
z = (invsqrtpi * cc) / __ieee754_sqrt (y);
else
{
u = pone (y); v = qone (y);
z = invsqrtpi * (u * cc - v * ss) / __ieee754_sqrt (y);
}
if (hx < 0)
return -z;
else
return z;
}
if (__glibc_unlikely (ix < 0x3e400000)) /* |x|<2**-27 */
{
if (huge + x > one)
return 0.5 * x; /* inexact if x!=0 necessary */
}
z = x * x;
r1 = z * R[0]; z2 = z * z;
r2 = R[1] + z * R[2]; z4 = z2 * z2;
r = r1 + z2 * r2 + z4 * R[3];
r *= x;
s1 = one + z * S[1];
s2 = S[2] + z * S[3];
s3 = S[4] + z * S[5];
s = s1 + z2 * s2 + z4 * s3;
return (x * 0.5 + r / s);
}
strong_alias (__ieee754_j1, __j1_finite)
static const double U0[5] = {
-1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
-1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
-9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
};
static const double V0[5] = {
1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
};
double
__ieee754_y1 (double x)
{
double z, s, c, ss, cc, u, v, u1, u2, v1, v2, v3, z2, z4;
int32_t hx, ix, lx;
EXTRACT_WORDS (hx, lx, x);
ix = 0x7fffffff & hx;
/* if Y1(NaN) is NaN, Y1(-inf) is NaN, Y1(inf) is 0 */
if (__glibc_unlikely (ix >= 0x7ff00000))
return one / (x + x * x);
if (__glibc_unlikely ((ix | lx) == 0))
return -HUGE_VAL + x;
/* -inf and overflow exception. */;
if (__glibc_unlikely (hx < 0))
return zero / (zero * x);
if (ix >= 0x40000000) /* |x| >= 2.0 */
{
__sincos (x, &s, &c);
ss = -s - c;
cc = s - c;
if (ix < 0x7fe00000) /* make sure x+x not overflow */
{
z = __cos (x + x);
if ((s * c) > zero)
cc = z / ss;
else
ss = z / cc;
}
/* y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))
* where x0 = x-3pi/4
* Better formula:
* cos(x0) = cos(x)cos(3pi/4)+sin(x)sin(3pi/4)
* = 1/sqrt(2) * (sin(x) - cos(x))
* sin(x0) = sin(x)cos(3pi/4)-cos(x)sin(3pi/4)
* = -1/sqrt(2) * (cos(x) + sin(x))
* To avoid cancellation, use
* sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
* to compute the worse one.
*/
if (ix > 0x48000000)
z = (invsqrtpi * ss) / __ieee754_sqrt (x);
else
{
u = pone (x); v = qone (x);
z = invsqrtpi * (u * ss + v * cc) / __ieee754_sqrt (x);
}
return z;
}
if (__glibc_unlikely (ix <= 0x3c900000)) /* x < 2**-54 */
{
z = -tpi / x;
if (__isinf (z))
__set_errno (ERANGE);
return z;
}
z = x * x;
u1 = U0[0] + z * U0[1]; z2 = z * z;
u2 = U0[2] + z * U0[3]; z4 = z2 * z2;
u = u1 + z2 * u2 + z4 * U0[4];
v1 = one + z * V0[0];
v2 = V0[1] + z * V0[2];
v3 = V0[3] + z * V0[4];
v = v1 + z2 * v2 + z4 * v3;
return (x * (u / v) + tpi * (__ieee754_j1 (x) * __ieee754_log (x) - one / x));
}
strong_alias (__ieee754_y1, __y1_finite)
/* For x >= 8, the asymptotic expansions of pone is
* 1 + 15/128 s^2 - 4725/2^15 s^4 - ..., where s = 1/x.
* We approximate pone by
* pone(x) = 1 + (R/S)
* where R = pr0 + pr1*s^2 + pr2*s^4 + ... + pr5*s^10
* S = 1 + ps0*s^2 + ... + ps4*s^10
* and
* | pone(x)-1-R/S | <= 2 ** ( -60.06)
*/
static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
};
static const double ps8[5] = {
1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
};
static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
};
static const double ps5[5] = {
5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
};
static const double pr3[6] = {
3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
};
static const double ps3[5] = {
3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
};
static const double pr2[6] = { /* for x in [2.8570,2]=1/[0.3499,0.5] */
1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
};
static const double ps2[5] = {
2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
};
static double
pone (double x)
{
const double *p, *q;
double z, r, s, r1, r2, r3, s1, s2, s3, z2, z4;
int32_t ix;
GET_HIGH_WORD (ix, x);
ix &= 0x7fffffff;
/* ix >= 0x40000000 for all calls to this function. */
if (ix >= 0x41b00000)
{
return one;
}
else if (ix >= 0x40200000)
{
p = pr8; q = ps8;
}
else if (ix >= 0x40122E8B)
{
p = pr5; q = ps5;
}
else if (ix >= 0x4006DB6D)
{
p = pr3; q = ps3;
}
else
{
p = pr2; q = ps2;
}
z = one / (x * x);
r1 = p[0] + z * p[1]; z2 = z * z;
r2 = p[2] + z * p[3]; z4 = z2 * z2;
r3 = p[4] + z * p[5];
r = r1 + z2 * r2 + z4 * r3;
s1 = one + z * q[0];
s2 = q[1] + z * q[2];
s3 = q[3] + z * q[4];
s = s1 + z2 * s2 + z4 * s3;
return one + r / s;
}
/* For x >= 8, the asymptotic expansions of qone is
* 3/8 s - 105/1024 s^3 - ..., where s = 1/x.
* We approximate pone by
* qone(x) = s*(0.375 + (R/S))
* where R = qr1*s^2 + qr2*s^4 + ... + qr5*s^10
* S = 1 + qs1*s^2 + ... + qs6*s^12
* and
* | qone(x)/s -0.375-R/S | <= 2 ** ( -61.13)
*/
static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
-1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
-7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
-1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
-4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
};
static const double qs8[6] = {
1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
-2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
};
static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
-1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
-8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
-1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
-1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
-2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
};
static const double qs5[6] = {
8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
-4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
};
static const double qr3[6] = {
-5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
-1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
-4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
-5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
-2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
-2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
};
static const double qs3[6] = {
4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
-1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
};
static const double qr2[6] = { /* for x in [2.8570,2]=1/[0.3499,0.5] */
-1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
-1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
-2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
-1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
-4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
-2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
};
static const double qs2[6] = {
2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
-4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
};
static double
qone (double x)
{
const double *p, *q;
double s, r, z, r1, r2, r3, s1, s2, s3, z2, z4, z6;
int32_t ix;
GET_HIGH_WORD (ix, x);
ix &= 0x7fffffff;
/* ix >= 0x40000000 for all calls to this function. */
if (ix >= 0x41b00000)
{
return .375 / x;
}
else if (ix >= 0x40200000)
{
p = qr8; q = qs8;
}
else if (ix >= 0x40122E8B)
{
p = qr5; q = qs5;
}
else if (ix >= 0x4006DB6D)
{
p = qr3; q = qs3;
}
else
{
p = qr2; q = qs2;
}
z = one / (x * x);
r1 = p[0] + z * p[1]; z2 = z * z;
r2 = p[2] + z * p[3]; z4 = z2 * z2;
r3 = p[4] + z * p[5]; z6 = z4 * z2;
r = r1 + z2 * r2 + z4 * r3;
s1 = one + z * q[0];
s2 = q[1] + z * q[2];
s3 = q[3] + z * q[4];
s = s1 + z2 * s2 + z4 * s3 + z6 * q[5];
return (.375 + r / s) / x;
}