mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-10 19:30:10 +00:00
0edbf12301
Current allocate_stack logic for create stacks is to first mmap all the required memory with the desirable memory and then mprotect the guard area with PROT_NONE if required. Although it works as expected, it pessimizes the allocation because it requires the kernel to actually increase commit charge (it counts against the available physical/swap memory available for the system). The only issue is to actually check this change since side-effects are really Linux specific and to actually account them it would require a kernel specific tests to parse the system wide information. On the kernel I checked /proc/self/statm does not show any meaningful difference for vmm and/or rss before and after thread creation. I could only see really meaningful information checking on system wide /proc/meminfo between thread creation: MemFree, MemAvailable, and Committed_AS shows large difference without the patch. I think trying to use these kind of information on a testcase is fragile. The BZ#18988 reports shows that the commit pages are easily seen with mlockall (MCL_FUTURE) (with lock all pages that become mapped in the process) however a more straighfoward testcase shows that pthread_create could be faster using this patch: -- static const int inner_count = 256; static const int outer_count = 128; static void *thread1(void *arg) { return NULL; } static void *sleeper(void *arg) { pthread_t ts[inner_count]; for (int i = 0; i < inner_count; i++) pthread_create (&ts[i], &a, thread1, NULL); for (int i = 0; i < inner_count; i++) pthread_join (ts[i], NULL); return NULL; } int main(void) { pthread_attr_init(&a); pthread_attr_setguardsize(&a, 1<<20); pthread_attr_setstacksize(&a, 1134592); pthread_t ts[outer_count]; for (int i = 0; i < outer_count; i++) pthread_create(&ts[i], &a, sleeper, NULL); for (int i = 0; i < outer_count; i++) pthread_join(ts[i], NULL); assert(r == 0); } return 0; } -- On x86_64 (4.4.0-45-generic, gcc 5.4.0) running the small benchtests I see: $ time ./test real 0m3.647s user 0m0.080s sys 0m11.836s While with the patch I see: $ time ./test real 0m0.696s user 0m0.040s sys 0m1.152s So I added a pthread_create benchtest (thread_create) which check the thread creation latency. As for the simple benchtests, I saw improvements in thread creation on all architectures I tested the change. Checked on x86_64-linux-gnu, i686-linux-gnu, aarch64-linux-gnu, arm-linux-gnueabihf, powerpc64le-linux-gnu, sparc64-linux-gnu, and sparcv9-linux-gnu. [BZ #18988] * benchtests/thread_create-inputs: New file. * benchtests/thread_create-source.c: Likewise. * support/xpthread_attr_setguardsize.c: Likewise. * support/Makefile (libsupport-routines): Add xpthread_attr_setguardsize object. * support/xthread.h: Add xpthread_attr_setguardsize prototype. * benchtests/Makefile (bench-pthread): Add thread_create. * nptl/allocatestack.c (allocate_stack): Call mmap with PROT_NONE and then mprotect the required area. |
||
---|---|---|
argp | ||
assert | ||
benchtests | ||
bits | ||
catgets | ||
conform | ||
crypt | ||
csu | ||
ctype | ||
debug | ||
dirent | ||
dlfcn | ||
elf | ||
gmon | ||
gnulib | ||
grp | ||
gshadow | ||
hesiod | ||
hurd | ||
iconv | ||
iconvdata | ||
include | ||
inet | ||
intl | ||
io | ||
libidn | ||
libio | ||
locale | ||
localedata | ||
login | ||
mach | ||
malloc | ||
manual | ||
math | ||
mathvec | ||
misc | ||
nis | ||
nptl | ||
nptl_db | ||
nscd | ||
nss | ||
po | ||
posix | ||
pwd | ||
resolv | ||
resource | ||
rt | ||
scripts | ||
setjmp | ||
shadow | ||
signal | ||
socket | ||
soft-fp | ||
stdio-common | ||
stdlib | ||
streams | ||
string | ||
sunrpc | ||
support | ||
sysdeps | ||
sysvipc | ||
termios | ||
time | ||
timezone | ||
wcsmbs | ||
wctype | ||
.gitattributes | ||
.gitignore | ||
abi-tags | ||
aclocal.m4 | ||
BUGS | ||
ChangeLog | ||
ChangeLog.1 | ||
ChangeLog.2 | ||
ChangeLog.3 | ||
ChangeLog.4 | ||
ChangeLog.5 | ||
ChangeLog.6 | ||
ChangeLog.7 | ||
ChangeLog.8 | ||
ChangeLog.9 | ||
ChangeLog.10 | ||
ChangeLog.11 | ||
ChangeLog.12 | ||
ChangeLog.13 | ||
ChangeLog.14 | ||
ChangeLog.15 | ||
ChangeLog.16 | ||
ChangeLog.17 | ||
ChangeLog.old-ports | ||
ChangeLog.old-ports-aarch64 | ||
ChangeLog.old-ports-aix | ||
ChangeLog.old-ports-alpha | ||
ChangeLog.old-ports-am33 | ||
ChangeLog.old-ports-arm | ||
ChangeLog.old-ports-cris | ||
ChangeLog.old-ports-hppa | ||
ChangeLog.old-ports-ia64 | ||
ChangeLog.old-ports-linux-generic | ||
ChangeLog.old-ports-m68k | ||
ChangeLog.old-ports-microblaze | ||
ChangeLog.old-ports-mips | ||
ChangeLog.old-ports-powerpc | ||
ChangeLog.old-ports-tile | ||
config.h.in | ||
config.make.in | ||
configure | ||
configure.ac | ||
CONFORMANCE | ||
COPYING | ||
COPYING.LIB | ||
extra-lib.mk | ||
gen-locales.mk | ||
INSTALL | ||
libc-abis | ||
libof-iterator.mk | ||
LICENSES | ||
MAINTAINERS | ||
Makeconfig | ||
Makefile | ||
Makefile.in | ||
Makerules | ||
NAMESPACE | ||
NEWS | ||
o-iterator.mk | ||
README | ||
README.pretty-printers | ||
README.tunables | ||
Rules | ||
shlib-versions | ||
test-skeleton.c | ||
version.h | ||
WUR-REPORT |
This directory contains the sources of the GNU C Library. See the file "version.h" for what release version you have. The GNU C Library is the standard system C library for all GNU systems, and is an important part of what makes up a GNU system. It provides the system API for all programs written in C and C-compatible languages such as C++ and Objective C; the runtime facilities of other programming languages use the C library to access the underlying operating system. In GNU/Linux systems, the C library works with the Linux kernel to implement the operating system behavior seen by user applications. In GNU/Hurd systems, it works with a microkernel and Hurd servers. The GNU C Library implements much of the POSIX.1 functionality in the GNU/Hurd system, using configurations i[4567]86-*-gnu. The current GNU/Hurd support requires out-of-tree patches that will eventually be incorporated into an official GNU C Library release. When working with Linux kernels, this version of the GNU C Library requires Linux kernel version 3.2 or later. Also note that the shared version of the libgcc_s library must be installed for the pthread library to work correctly. The GNU C Library supports these configurations for using Linux kernels: aarch64*-*-linux-gnu alpha*-*-linux-gnu arm-*-linux-gnueabi hppa-*-linux-gnu Not currently functional without patches. i[4567]86-*-linux-gnu x86_64-*-linux-gnu Can build either x86_64 or x32 ia64-*-linux-gnu m68k-*-linux-gnu microblaze*-*-linux-gnu mips-*-linux-gnu mips64-*-linux-gnu powerpc-*-linux-gnu Hardware or software floating point, BE only. powerpc64*-*-linux-gnu Big-endian and little-endian. s390-*-linux-gnu s390x-*-linux-gnu sh[34]-*-linux-gnu sparc*-*-linux-gnu sparc64*-*-linux-gnu tilegx-*-linux-gnu tilepro-*-linux-gnu If you are interested in doing a port, please contact the glibc maintainers; see http://www.gnu.org/software/libc/ for more information. See the file INSTALL to find out how to configure, build, and install the GNU C Library. You might also consider reading the WWW pages for the C library at http://www.gnu.org/software/libc/. The GNU C Library is (almost) completely documented by the Texinfo manual found in the `manual/' subdirectory. The manual is still being updated and contains some known errors and omissions; we regret that we do not have the resources to work on the manual as much as we would like. For corrections to the manual, please file a bug in the `manual' component, following the bug-reporting instructions below. Please be sure to check the manual in the current development sources to see if your problem has already been corrected. Please see http://www.gnu.org/software/libc/bugs.html for bug reporting information. We are now using the Bugzilla system to track all bug reports. This web page gives detailed information on how to report bugs properly. The GNU C Library is free software. See the file COPYING.LIB for copying conditions, and LICENSES for notices about a few contributions that require these additional notices to be distributed. License copyright years may be listed using range notation, e.g., 1996-2015, indicating that every year in the range, inclusive, is a copyrightable year that would otherwise be listed individually.