mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-16 05:40:08 +00:00
f2144b7874
Co-authored-by: Gabriel F. T. Gomes <gabriel@inconstante.net.br> Reviewed-by: Gabriel F. T. Gomes <gabriel@inconstante.net.br> Reviewed-by: Joseph Myers <joseph@codesourcery.com> The utility of a ChangeLog file has been discussed in various mailing list threads and GNU Tools Cauldrons in the past years and the general consensus is that while the file may have been very useful in the past when revision control did not exist or was not as powerful as it is today, it's current utility is fast diminishing. Further, the ChangeLog format gets in the way of modernisation of processes since it almost always results in rewriting of a commit, thus preventing use of any code review tools to automatically manage patches in the glibc project. There is consensus in the glibc community that documentation of why a change was done (i.e. a detailed description in a git commit) is more useful than what changed (i.e. a ChangeLog entry) since the latter can be deduced from the patch. The GNU community would however like to keep the option of ascertaining what changed through a ChangeLog-like output and as a compromise, it was proposed that a script be developed that generates this output. The script below is the result of these discussions. This script takes two git revisions references as input and generates the git log between those revisions in a form that resembles a ChangeLog. Its capabilities and limitations are listed in a comment in the script. On a high level it is capable of parsing C code and telling what changed at the top level, but not within constructs such as functions. Design ------ At a high level, the script analyses the raw output of a VCS, parses the source files that have changed and attempts to determine what changed. The script driver needs three distinct components to be fully functional for a repository: - A vcstocl_quirks.py file that helps it parse weird patterns in sources that may result from preprocessor defines. - A VCS plugin backend; the git backend is implemented for glibc - A programming language parser plugin. C is currently implemented. Additional programming language parsers can be added to give more detailed output for changes in those types of files. For input in languages other than those that have a parser, the script only identifies if a file has been added, removed, modified, permissions changed, etc. but cannot understand the change in content. The C Parser ------------ The C parser is capable of parsing C programs with preprocessor macros in place, as if they were part of the language. This presents some challenges with parsing code that expands macros on the fly and to help work around that, a vcstocl_quirks.py file has transformations to ease things. The C parser currently can identify macro definitions and scopes and all global and static declarations and definitions. It cannot parse (and compare) changes inside functions yet, it could be a future enhancement if the need for it arises. Testing ------- The script has been tested with the glibc repository up to glibc-2.29 and also in the past with emacs. While it would be ideal to have something like this in a repository like gnulib, that should not be a bottleneck for glibc to start using this, so this patch proposes to add these scripts into glibc. And here is (hopefully!) one of the last ChangeLog entries we'd have to write for glibc: * scripts/gitlog_to_changelog.py: New script to auto-generate ChangeLog. * scripts/vcs_to_changelog/frontend_c.py: New file. * scripts/vcs_to_changelog/misc_util.py: New file. * scripts/vcs_to_changelog/vcs_git.py: New file. * scripts/vcs_to_changelog/vcstocl_quirks.py: Likewise.
828 lines
30 KiB
Python
828 lines
30 KiB
Python
#!/usr/bin/python3
|
|
# The C Parser.
|
|
# Copyright (C) 2019 Free Software Foundation, Inc.
|
|
#
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU General Public License as published by
|
|
# the Free Software Foundation; either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License
|
|
# along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
|
|
from enum import Enum
|
|
import re
|
|
from vcs_to_changelog.misc_util import *
|
|
|
|
class block_flags(Enum):
|
|
''' Flags for the code block.
|
|
'''
|
|
else_block = 1
|
|
macro_defined = 2
|
|
macro_redefined = 3
|
|
|
|
|
|
class block_type(Enum):
|
|
''' Type of code block.
|
|
'''
|
|
file = 1
|
|
macro_cond = 2
|
|
macro_def = 3
|
|
macro_undef = 4
|
|
macro_include = 5
|
|
macro_info = 6
|
|
decl = 7
|
|
func = 8
|
|
composite = 9
|
|
macrocall = 10
|
|
fndecl = 11
|
|
assign = 12
|
|
struct = 13
|
|
union = 14
|
|
enum = 15
|
|
|
|
# A dictionary describing what each action (add, modify, delete) show up as in
|
|
# the ChangeLog output.
|
|
actions = {0:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'},
|
|
block_type.file:{'new': 'New file', 'mod': 'Modified file',
|
|
'del': 'Remove file'},
|
|
block_type.macro_cond:{'new': 'New', 'mod': 'Modified',
|
|
'del': 'Remove'},
|
|
block_type.macro_def:{'new': 'New', 'mod': 'Modified',
|
|
'del': 'Remove'},
|
|
block_type.macro_include:{'new': 'Include file', 'mod': 'Modified',
|
|
'del': 'Remove include'},
|
|
block_type.macro_info:{'new': 'New preprocessor message',
|
|
'mod': 'Modified', 'del': 'Remove'},
|
|
block_type.decl:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'},
|
|
block_type.func:{'new': 'New function', 'mod': 'Modified function',
|
|
'del': 'Remove function'},
|
|
block_type.composite:{'new': 'New', 'mod': 'Modified',
|
|
'del': 'Remove'},
|
|
block_type.struct:{'new': 'New struct', 'mod': 'Modified struct',
|
|
'del': 'Remove struct'},
|
|
block_type.union:{'new': 'New union', 'mod': 'Modified union',
|
|
'del': 'Remove union'},
|
|
block_type.enum:{'new': 'New enum', 'mod': 'Modified enum',
|
|
'del': 'Remove enum'},
|
|
block_type.macrocall:{'new': 'New', 'mod': 'Modified',
|
|
'del': 'Remove'},
|
|
block_type.fndecl:{'new': 'New function', 'mod': 'Modified',
|
|
'del': 'Remove'},
|
|
block_type.assign:{'new': 'New', 'mod': 'Modified', 'del': 'Remove'}}
|
|
|
|
def new_block(name, type, contents, parent, flags = 0):
|
|
''' Create a new code block with the parent as PARENT.
|
|
|
|
The code block is a basic structure around which the tree representation of
|
|
the source code is built. It has the following attributes:
|
|
|
|
- name: A name to refer it by in the ChangeLog
|
|
- type: Any one of the following types in BLOCK_TYPE.
|
|
- contents: The contents of the block. For a block of types file or
|
|
macro_cond, this would be a list of blocks that it nests. For other types
|
|
it is a list with a single string specifying its contents.
|
|
- parent: This is the parent of the current block, useful in setting up
|
|
#elif or #else blocks in the tree.
|
|
- flags: A special field to indicate some properties of the block. See
|
|
BLOCK_FLAGS for values.
|
|
'''
|
|
block = {}
|
|
block['matched'] = False
|
|
block['name'] = name
|
|
block['type'] = type
|
|
block['contents'] = contents
|
|
block['parent'] = parent
|
|
if parent:
|
|
parent['contents'].append(block)
|
|
|
|
block['flags'] = flags
|
|
block['actions'] = actions[type]
|
|
|
|
return block
|
|
|
|
|
|
class ExprParser:
|
|
''' Parent class of all of the C expression parsers.
|
|
|
|
It is necessary that the children override the parse_line() method.
|
|
'''
|
|
ATTRIBUTE = r'(((__attribute__\s*\(\([^;]+\)\))|(asm\s*\([?)]+\)))\s*)*'
|
|
|
|
def __init__(self, project_quirks, debug):
|
|
self.project_quirks = project_quirks
|
|
self.debug = debug
|
|
|
|
def fast_forward_scope(self, cur, op, loc):
|
|
''' Consume lines in a code block.
|
|
|
|
Consume all lines of a block of code such as a composite type declaration or
|
|
a function declaration.
|
|
|
|
- CUR is the string to consume this expression from
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
|
|
- Returns: The next location to be read in the array as well as the updated
|
|
value of CUR, which will now have the body of the function or composite
|
|
type.
|
|
'''
|
|
nesting = cur.count('{') - cur.count('}')
|
|
while nesting > 0 and loc < len(op):
|
|
cur = cur + ' ' + op[loc]
|
|
|
|
nesting = nesting + op[loc].count('{')
|
|
nesting = nesting - op[loc].count('}')
|
|
loc = loc + 1
|
|
|
|
return (cur, loc)
|
|
|
|
def parse_line(self, cur, op, loc, code, macros):
|
|
''' The parse method should always be overridden by the child.
|
|
'''
|
|
raise
|
|
|
|
|
|
class FuncParser(ExprParser):
|
|
REGEX = re.compile(ExprParser.ATTRIBUTE + r'\s*(\w+)\s*\([^(][^{]+\)\s*{')
|
|
|
|
def parse_line(self, cur, op, loc, code, macros):
|
|
''' Parse a function.
|
|
|
|
Match a function definition.
|
|
|
|
- CUR is the string to consume this expression from
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
- CODE is the block to which we add this
|
|
|
|
- Returns: The next location to be read in the array.
|
|
'''
|
|
found = re.search(self.REGEX, cur)
|
|
if not found:
|
|
return cur, loc
|
|
|
|
name = found.group(5)
|
|
self.debug.print('FOUND FUNC: %s' % name)
|
|
|
|
# Consume everything up to the ending brace of the function.
|
|
(cur, loc) = self.fast_forward_scope(cur, op, loc)
|
|
|
|
new_block(name, block_type.func, [cur], code)
|
|
|
|
return '', loc
|
|
|
|
|
|
class CompositeParser(ExprParser):
|
|
# Composite types such as structs and unions.
|
|
REGEX = re.compile(r'(struct|union|enum)\s*(\w*)\s*{')
|
|
|
|
def parse_line(self, cur, op, loc, code, macros):
|
|
''' Parse a composite type.
|
|
|
|
Match declaration of a composite type such as a sruct or a union..
|
|
|
|
- CUR is the string to consume this expression from
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
- CODE is the block to which we add this
|
|
|
|
- Returns: The next location to be read in the array.
|
|
'''
|
|
found = re.search(self.REGEX, cur)
|
|
if not found:
|
|
return cur, loc
|
|
|
|
# Lap up all of the struct definition.
|
|
(cur, loc) = self.fast_forward_scope(cur, op, loc)
|
|
|
|
name = found.group(2)
|
|
|
|
if not name:
|
|
if 'typedef' in cur:
|
|
name = re.sub(r'.*}\s*(\w+);$', r'\1', cur)
|
|
else:
|
|
name= '<anoymous>'
|
|
|
|
ctype = found.group(1)
|
|
|
|
if ctype == 'struct':
|
|
blocktype = block_type.struct
|
|
if ctype == 'enum':
|
|
blocktype = block_type.enum
|
|
if ctype == 'union':
|
|
blocktype = block_type.union
|
|
|
|
new_block(name, block_type.composite, [cur], code)
|
|
|
|
return '', loc
|
|
|
|
|
|
class AssignParser(ExprParser):
|
|
# Static assignments.
|
|
REGEX = re.compile(r'(\w+)\s*(\[[^\]]*\])*\s*([^\s]*attribute[\s\w()]+)?\s*=')
|
|
|
|
def parse_line(self, cur, op, loc, code, macros):
|
|
''' Parse an assignment statement.
|
|
|
|
This includes array assignments.
|
|
|
|
- CUR is the string to consume this expression from
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
- CODE is the block to which we add this
|
|
|
|
- Returns: The next location to be read in the array.
|
|
'''
|
|
found = re.search(self.REGEX, cur)
|
|
if not found:
|
|
return cur, loc
|
|
|
|
name = found.group(1)
|
|
self.debug.print('FOUND ASSIGN: %s' % name)
|
|
# Lap up everything up to semicolon.
|
|
while ';' not in cur and loc < len(op):
|
|
cur = op[loc]
|
|
loc = loc + 1
|
|
|
|
new_block(name, block_type.assign, [cur], code)
|
|
|
|
return '', loc
|
|
|
|
|
|
class DeclParser(ExprParser):
|
|
# Function pointer typedefs.
|
|
TYPEDEF_FN_RE = re.compile(r'\(\*(\w+)\)\s*\([^)]+\);')
|
|
|
|
# Simple decls.
|
|
DECL_RE = re.compile(r'(\w+)(\[\w*\])*\s*' + ExprParser.ATTRIBUTE + ';')
|
|
|
|
# __typeof decls.
|
|
TYPEOF_RE = re.compile(r'__typeof\s*\([\w\s]+\)\s*(\w+)\s*' + \
|
|
ExprParser.ATTRIBUTE + ';')
|
|
|
|
# Function Declarations.
|
|
FNDECL_RE = re.compile(r'\s*(\w+)\s*\([^\(][^;]*\)\s*' +
|
|
ExprParser.ATTRIBUTE + ';')
|
|
|
|
def __init__(self, regex, blocktype, project_quirks, debug):
|
|
# The regex for the current instance.
|
|
self.REGEX = regex
|
|
self.blocktype = blocktype
|
|
super().__init__(project_quirks, debug)
|
|
|
|
def parse_line(self, cur, op, loc, code, macros):
|
|
''' Parse a top level declaration.
|
|
|
|
All types of declarations except function declarations.
|
|
|
|
- CUR is the string to consume this expression from
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
- CODE is the block to which we add this function
|
|
|
|
- Returns: The next location to be read in the array.
|
|
'''
|
|
found = re.search(self.REGEX, cur)
|
|
if not found:
|
|
return cur, loc
|
|
|
|
# The name is the first group for all of the above regexes. This is a
|
|
# coincidence, so care must be taken if regexes are added or changed to
|
|
# ensure that this is true.
|
|
name = found.group(1)
|
|
|
|
self.debug.print('FOUND DECL: %s' % name)
|
|
new_block(name, self.blocktype, [cur], code)
|
|
|
|
return '', loc
|
|
|
|
|
|
class MacroParser(ExprParser):
|
|
# The macrocall_re peeks into the next line to ensure that it doesn't
|
|
# eat up a FUNC by accident. The func_re regex is also quite crude and
|
|
# only intends to ensure that the function name gets picked up
|
|
# correctly.
|
|
MACROCALL_RE = re.compile(r'(\w+)\s*(\(.*\))*$')
|
|
|
|
def parse_line(self, cur, op, loc, code, macros):
|
|
''' Parse a macro call.
|
|
|
|
Match a symbol hack macro calls that get added without semicolons.
|
|
|
|
- CUR is the string to consume this expression from
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
- CODE is the block to which we add this
|
|
- MACROS is the regex match object.
|
|
|
|
- Returns: The next location to be read in the array.
|
|
'''
|
|
|
|
# First we have the macros for symbol hacks and all macros we identified so
|
|
# far.
|
|
if cur.count('(') != cur.count(')'):
|
|
return cur, loc
|
|
if loc < len(op) and '{' in op[loc]:
|
|
return cur, loc
|
|
|
|
found = re.search(self.MACROCALL_RE, cur)
|
|
if found:
|
|
sym = found.group(1)
|
|
name = found.group(2)
|
|
if sym in macros or self.project_quirks and \
|
|
sym in self.project_quirks.C_MACROS:
|
|
self.debug.print('FOUND MACROCALL: %s (%s)' % (sym, name))
|
|
new_block(sym, block_type.macrocall, [cur], code)
|
|
return '', loc
|
|
|
|
# Next, there could be macros that get called right inside their #ifdef, but
|
|
# without the semi-colon.
|
|
if cur.strip() == code['name'].strip():
|
|
self.debug.print('FOUND MACROCALL (without brackets): %s' % (cur))
|
|
new_block(cur, block_type.macrocall, [cur], code)
|
|
return '',loc
|
|
|
|
return cur, loc
|
|
|
|
|
|
class Frontend:
|
|
''' The C Frontend implementation.
|
|
'''
|
|
KNOWN_MACROS = []
|
|
|
|
def __init__(self, project_quirks, debug):
|
|
self.op = []
|
|
self.debug = debug
|
|
self.project_quirks = project_quirks
|
|
|
|
self.c_expr_parsers = [
|
|
CompositeParser(project_quirks, debug),
|
|
AssignParser(project_quirks, debug),
|
|
DeclParser(DeclParser.TYPEOF_RE, block_type.decl,
|
|
project_quirks, debug),
|
|
DeclParser(DeclParser.TYPEDEF_FN_RE, block_type.decl,
|
|
project_quirks, debug),
|
|
DeclParser(DeclParser.FNDECL_RE, block_type.fndecl,
|
|
project_quirks, debug),
|
|
FuncParser(project_quirks, debug),
|
|
DeclParser(DeclParser.DECL_RE, block_type.decl, project_quirks,
|
|
debug),
|
|
MacroParser(project_quirks, debug)]
|
|
|
|
|
|
def remove_extern_c(self):
|
|
''' Process extern "C"/"C++" block nesting.
|
|
|
|
The extern "C" nesting does not add much value so it's safe to almost always
|
|
drop it. Also drop extern "C++"
|
|
'''
|
|
new_op = []
|
|
nesting = 0
|
|
extern_nesting = 0
|
|
for l in self.op:
|
|
if '{' in l:
|
|
nesting = nesting + 1
|
|
if re.match(r'extern\s*"C"\s*{', l):
|
|
extern_nesting = nesting
|
|
continue
|
|
if '}' in l:
|
|
nesting = nesting - 1
|
|
if nesting < extern_nesting:
|
|
extern_nesting = 0
|
|
continue
|
|
new_op.append(l)
|
|
|
|
# Now drop all extern C++ blocks.
|
|
self.op = new_op
|
|
new_op = []
|
|
nesting = 0
|
|
extern_nesting = 0
|
|
in_cpp = False
|
|
for l in self.op:
|
|
if re.match(r'extern\s*"C\+\+"\s*{', l):
|
|
nesting = nesting + 1
|
|
in_cpp = True
|
|
|
|
if in_cpp:
|
|
if '{' in l:
|
|
nesting = nesting + 1
|
|
if '}' in l:
|
|
nesting = nesting - 1
|
|
if nesting == 0:
|
|
new_op.append(l)
|
|
|
|
self.op = new_op
|
|
|
|
|
|
def remove_comments(self, op):
|
|
''' Remove comments.
|
|
|
|
Return OP by removing all comments from it.
|
|
'''
|
|
self.debug.print('REMOVE COMMENTS')
|
|
|
|
sep='\n'
|
|
opstr = sep.join(op)
|
|
opstr = re.sub(r'/\*.*?\*/', r'', opstr, flags=re.MULTILINE | re.DOTALL)
|
|
opstr = re.sub(r'\\\n', r' ', opstr, flags=re.MULTILINE | re.DOTALL)
|
|
new_op = list(filter(None, opstr.split(sep)))
|
|
|
|
return new_op
|
|
|
|
|
|
def normalize_condition(self, name):
|
|
''' Make some minor transformations on macro conditions to make them more
|
|
readable.
|
|
'''
|
|
# Negation with a redundant bracket.
|
|
name = re.sub(r'!\s*\(\s*(\w+)\s*\)', r'! \1', name)
|
|
# Pull in negation of equality.
|
|
name = re.sub(r'!\s*\(\s*(\w+)\s*==\s*(\w+)\)', r'\1 != \2', name)
|
|
# Pull in negation of inequality.
|
|
name = re.sub(r'!\s*\(\s*(\w+)\s*!=\s*(\w+)\)', r'\1 == \2', name)
|
|
# Fix simple double negation.
|
|
name = re.sub(r'!\s*\(\s*!\s*(\w+)\s*\)', r'\1', name)
|
|
# Similar, but nesting a complex expression. Because of the greedy match,
|
|
# this matches only the outermost brackets.
|
|
name = re.sub(r'!\s*\(\s*!\s*\((.*)\)\s*\)$', r'\1', name)
|
|
return name
|
|
|
|
|
|
def parse_preprocessor(self, loc, code, start = ''):
|
|
''' Parse a preprocessor directive.
|
|
|
|
In case a preprocessor condition (i.e. if/elif/else), create a new code
|
|
block to nest code into and in other cases, identify and add entities suchas
|
|
include files, defines, etc.
|
|
|
|
- OP is the string array for the file
|
|
- LOC is the first unread location in CUR
|
|
- CODE is the block to which we add this function
|
|
- START is the string that should continue to be expanded in case we step
|
|
into a new macro scope.
|
|
|
|
- Returns: The next location to be read in the array.
|
|
'''
|
|
cur = self.op[loc]
|
|
loc = loc + 1
|
|
endblock = False
|
|
|
|
self.debug.print('PARSE_MACRO: %s' % cur)
|
|
|
|
# Remove the # and strip spaces again.
|
|
cur = cur[1:].strip()
|
|
|
|
# Include file.
|
|
if cur.find('include') == 0:
|
|
m = re.search(r'include\s*["<]?([^">]+)[">]?', cur)
|
|
new_block(m.group(1), block_type.macro_include, [cur], code)
|
|
|
|
# Macro definition.
|
|
if cur.find('define') == 0:
|
|
m = re.search(r'define\s+([a-zA-Z0-9_]+)', cur)
|
|
name = m.group(1)
|
|
exists = False
|
|
# Find out if this is a redefinition.
|
|
for c in code['contents']:
|
|
if c['name'] == name and c['type'] == block_type.macro_def:
|
|
c['flags'] = block_flags.macro_redefined
|
|
exists = True
|
|
break
|
|
if not exists:
|
|
new_block(m.group(1), block_type.macro_def, [cur], code,
|
|
block_flags.macro_defined)
|
|
# Add macros as we encounter them.
|
|
self.KNOWN_MACROS.append(m.group(1))
|
|
|
|
# Macro undef.
|
|
if cur.find('undef') == 0:
|
|
m = re.search(r'undef\s+([a-zA-Z0-9_]+)', cur)
|
|
new_block(m.group(1), block_type.macro_def, [cur], code)
|
|
|
|
# #error and #warning macros.
|
|
if cur.find('error') == 0 or cur.find('warning') == 0:
|
|
m = re.search(r'(error|warning)\s+"?(.*)"?', cur)
|
|
if m:
|
|
name = m.group(2)
|
|
else:
|
|
name = '<blank>'
|
|
new_block(name, block_type.macro_info, [cur], code)
|
|
|
|
# Start of an #if or #ifdef block.
|
|
elif cur.find('if') == 0:
|
|
rem = re.sub(r'ifndef', r'!', cur).strip()
|
|
rem = re.sub(r'(ifdef|defined|if)', r'', rem).strip()
|
|
rem = self.normalize_condition(rem)
|
|
ifdef = new_block(rem, block_type.macro_cond, [], code)
|
|
ifdef['headcond'] = ifdef
|
|
ifdef['start'] = start
|
|
loc = self.parse_line(loc, ifdef, start)
|
|
|
|
# End the previous #if/#elif and begin a new block.
|
|
elif cur.find('elif') == 0 and code['parent']:
|
|
rem = self.normalize_condition(re.sub(r'(elif|defined)', r'', cur).strip())
|
|
# The #else and #elif blocks should go into the current block's parent.
|
|
ifdef = new_block(rem, block_type.macro_cond, [], code['parent'])
|
|
ifdef['headcond'] = code['headcond']
|
|
loc = self.parse_line(loc, ifdef, code['headcond']['start'])
|
|
endblock = True
|
|
|
|
# End the previous #if/#elif and begin a new block.
|
|
elif cur.find('else') == 0 and code['parent']:
|
|
name = self.normalize_condition('!(' + code['name'] + ')')
|
|
ifdef = new_block(name, block_type.macro_cond, [], code['parent'],
|
|
block_flags.else_block)
|
|
ifdef['headcond'] = code['headcond']
|
|
loc = self.parse_line(loc, ifdef, code['headcond']['start'])
|
|
endblock = True
|
|
|
|
elif cur.find('endif') == 0 and code['parent']:
|
|
# Insert an empty else block if there isn't one.
|
|
if code['flags'] != block_flags.else_block:
|
|
name = self.normalize_condition('!(' + code['name'] + ')')
|
|
ifdef = new_block(name, block_type.macro_cond, [], code['parent'],
|
|
block_flags.else_block)
|
|
ifdef['headcond'] = code['headcond']
|
|
loc = self.parse_line(loc - 1, ifdef, code['headcond']['start'])
|
|
endblock = True
|
|
|
|
return (loc, endblock)
|
|
|
|
|
|
def parse_c_expr(self, cur, loc, code):
|
|
''' Parse a C expression.
|
|
|
|
CUR is the string to be parsed, which continues to grow until a match is
|
|
found. OP is the string array and LOC is the first unread location in the
|
|
string array. CODE is the block in which any identified expressions should
|
|
be added.
|
|
'''
|
|
self.debug.print('PARSING: %s' % cur)
|
|
|
|
for p in self.c_expr_parsers:
|
|
cur, loc = p.parse_line(cur, self.op, loc, code, self.KNOWN_MACROS)
|
|
if not cur:
|
|
break
|
|
|
|
return cur, loc
|
|
|
|
|
|
def expand_problematic_macros(self, cur):
|
|
''' Replace problem macros with their substitutes in CUR.
|
|
'''
|
|
for p in self.project_quirks.MACRO_QUIRKS:
|
|
cur = re.sub(p['orig'], p['sub'], cur)
|
|
|
|
return cur
|
|
|
|
|
|
def parse_line(self, loc, code, start = ''):
|
|
'''
|
|
Parse the file line by line. The function assumes a mostly GNU coding
|
|
standard compliant input so it might barf with anything that is eligible for
|
|
the Obfuscated C code contest.
|
|
|
|
The basic idea of the parser is to identify macro conditional scopes and
|
|
definitions, includes, etc. and then parse the remaining C code in the
|
|
context of those macro scopes. The parser does not try to understand the
|
|
semantics of the code or even validate its syntax. It only records high
|
|
level symbols in the source and makes a tree structure to indicate the
|
|
declaration/definition of those symbols and their scope in the macro
|
|
definitions.
|
|
|
|
OP is the string array.
|
|
LOC is the first unparsed line.
|
|
CODE is the block scope within which the parsing is currently going on.
|
|
START is the string with which this parsing should start.
|
|
'''
|
|
cur = start
|
|
endblock = False
|
|
saved_cur = ''
|
|
saved_loc = 0
|
|
endblock_loc = loc
|
|
|
|
while loc < len(self.op):
|
|
nextline = self.op[loc]
|
|
|
|
# Macros.
|
|
if nextline[0] == '#':
|
|
(loc, endblock) = self.parse_preprocessor(loc, code, cur)
|
|
if endblock:
|
|
endblock_loc = loc
|
|
# Rest of C Code.
|
|
else:
|
|
cur = cur + ' ' + nextline
|
|
cur = self.expand_problematic_macros(cur).strip()
|
|
cur, loc = self.parse_c_expr(cur, loc + 1, code)
|
|
|
|
if endblock and not cur:
|
|
# If we are returning from the first #if block, we want to proceed
|
|
# beyond the current block, not repeat it for any preceding blocks.
|
|
if code['headcond'] == code:
|
|
return loc
|
|
else:
|
|
return endblock_loc
|
|
|
|
return loc
|
|
|
|
def drop_empty_blocks(self, tree):
|
|
''' Drop empty macro conditional blocks.
|
|
'''
|
|
newcontents = []
|
|
|
|
for x in tree['contents']:
|
|
if x['type'] != block_type.macro_cond or len(x['contents']) > 0:
|
|
newcontents.append(x)
|
|
|
|
for t in newcontents:
|
|
if t['type'] == block_type.macro_cond:
|
|
self.drop_empty_blocks(t)
|
|
|
|
tree['contents'] = newcontents
|
|
|
|
|
|
def consolidate_tree_blocks(self, tree):
|
|
''' Consolidate common macro conditional blocks.
|
|
|
|
Get macro conditional blocks at the same level but scatterred across the
|
|
file together into a single common block to allow for better comparison.
|
|
'''
|
|
# Nothing to do for non-nesting blocks.
|
|
if tree['type'] != block_type.macro_cond \
|
|
and tree['type'] != block_type.file:
|
|
return
|
|
|
|
# Now for nesting blocks, get the list of unique condition names and
|
|
# consolidate code under them. The result also bunches up all the
|
|
# conditions at the top.
|
|
newcontents = []
|
|
|
|
macros = [x for x in tree['contents'] \
|
|
if x['type'] == block_type.macro_cond]
|
|
macro_names = sorted(set([x['name'] for x in macros]))
|
|
for m in macro_names:
|
|
nc = [x['contents'] for x in tree['contents'] if x['name'] == m \
|
|
and x['type'] == block_type.macro_cond]
|
|
b = new_block(m, block_type.macro_cond, sum(nc, []), tree)
|
|
self.consolidate_tree_blocks(b)
|
|
newcontents.append(b)
|
|
|
|
newcontents.extend([x for x in tree['contents'] \
|
|
if x['type'] != block_type.macro_cond])
|
|
|
|
tree['contents'] = newcontents
|
|
|
|
|
|
def compact_tree(self, tree):
|
|
''' Try to reduce the tree to its minimal form.
|
|
|
|
A source code tree in its simplest form may have a lot of duplicated
|
|
information that may be difficult to compare and come up with a minimal
|
|
difference.
|
|
'''
|
|
|
|
# First, drop all empty blocks.
|
|
self.drop_empty_blocks(tree)
|
|
|
|
# Macro conditions that nest the entire file aren't very interesting. This
|
|
# should take care of the header guards.
|
|
if tree['type'] == block_type.file \
|
|
and len(tree['contents']) == 1 \
|
|
and tree['contents'][0]['type'] == block_type.macro_cond:
|
|
tree['contents'] = tree['contents'][0]['contents']
|
|
|
|
# Finally consolidate all macro conditional blocks.
|
|
self.consolidate_tree_blocks(tree)
|
|
|
|
|
|
def parse(self, op):
|
|
''' File parser.
|
|
|
|
Parse the input array of lines OP and generate a tree structure to
|
|
represent the file. This tree structure is then used for comparison between
|
|
the old and new file.
|
|
'''
|
|
self.KNOWN_MACROS = []
|
|
tree = new_block('', block_type.file, [], None)
|
|
self.op = self.remove_comments(op)
|
|
self.remove_extern_c()
|
|
self.op = [re.sub(r'#\s+', '#', x) for x in self.op]
|
|
self.parse_line(0, tree)
|
|
self.compact_tree(tree)
|
|
self.dump_tree(tree, 0)
|
|
|
|
return tree
|
|
|
|
|
|
def print_change(self, tree, action, prologue = ''):
|
|
''' Print the nature of the differences found in the tree compared to the
|
|
other tree. TREE is the tree that changed, action is what the change was
|
|
(Added, Removed, Modified) and prologue specifies the macro scope the change
|
|
is in. The function calls itself recursively for all macro condition tree
|
|
nodes.
|
|
'''
|
|
|
|
if tree['type'] != block_type.macro_cond:
|
|
print('\t%s(%s): %s.' % (prologue, tree['name'], action))
|
|
return
|
|
|
|
prologue = '%s[%s]' % (prologue, tree['name'])
|
|
for t in tree['contents']:
|
|
if t['type'] == block_type.macro_cond:
|
|
self.print_change(t, action, prologue)
|
|
else:
|
|
print('\t%s(%s): %s.' % (prologue, t['name'], action))
|
|
|
|
|
|
def compare_trees(self, left, right, prologue = ''):
|
|
''' Compare two trees and print the difference.
|
|
|
|
This routine is the entry point to compare two trees and print out their
|
|
differences. LEFT and RIGHT will always have the same name and type,
|
|
starting with block_type.file and '' at the top level.
|
|
'''
|
|
|
|
if left['type'] == block_type.macro_cond or left['type'] == block_type.file:
|
|
|
|
if left['type'] == block_type.macro_cond:
|
|
prologue = '%s[%s]' % (prologue, left['name'])
|
|
|
|
# Make sure that everything in the left tree exists in the right tree.
|
|
for cl in left['contents']:
|
|
found = False
|
|
for cr in right['contents']:
|
|
if not cl['matched'] and not cr['matched'] and \
|
|
cl['name'] == cr['name'] and cl['type'] == cr['type']:
|
|
cl['matched'] = cr['matched'] = True
|
|
self.compare_trees(cl, cr, prologue)
|
|
found = True
|
|
break
|
|
if not found:
|
|
self.print_change(cl, cl['actions']['del'], prologue)
|
|
|
|
# ... and vice versa. This time we only need to look at unmatched
|
|
# contents.
|
|
for cr in right['contents']:
|
|
if not cr['matched']:
|
|
self.print_change(cr, cr['actions']['new'], prologue)
|
|
else:
|
|
if left['contents'] != right['contents']:
|
|
self.print_change(left, left['actions']['mod'], prologue)
|
|
|
|
|
|
def dump_tree(self, tree, indent):
|
|
''' Print the entire tree.
|
|
'''
|
|
if not self.debug.debug:
|
|
return
|
|
|
|
if tree['type'] == block_type.macro_cond or tree['type'] == block_type.file:
|
|
print('%sScope: %s' % (' ' * indent, tree['name']))
|
|
for c in tree['contents']:
|
|
self.dump_tree(c, indent + 4)
|
|
print('%sEndScope: %s' % (' ' * indent, tree['name']))
|
|
else:
|
|
if tree['type'] == block_type.func:
|
|
print('%sFUNC: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.composite:
|
|
print('%sCOMPOSITE: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.assign:
|
|
print('%sASSIGN: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.fndecl:
|
|
print('%sFNDECL: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.decl:
|
|
print('%sDECL: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.macrocall:
|
|
print('%sMACROCALL: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.macro_def:
|
|
print('%sDEFINE: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.macro_include:
|
|
print('%sINCLUDE: %s' % (' ' * indent, tree['name']))
|
|
elif tree['type'] == block_type.macro_undef:
|
|
print('%sUNDEF: %s' % (' ' * indent, tree['name']))
|
|
else:
|
|
print('%sMACRO LEAF: %s' % (' ' * indent, tree['name']))
|
|
|
|
|
|
def compare(self, oldfile, newfile):
|
|
''' Entry point for the C backend.
|
|
|
|
Parse the two files into trees and compare them. Print the result of the
|
|
comparison in the ChangeLog-like format.
|
|
'''
|
|
self.debug.print('LEFT TREE')
|
|
self.debug.print('-' * 80)
|
|
left = self.parse(oldfile)
|
|
|
|
self.debug.print('RIGHT TREE')
|
|
self.debug.print('-' * 80)
|
|
right = self.parse(newfile)
|
|
|
|
self.compare_trees(left, right)
|