mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 15:00:06 +00:00
216 lines
5.7 KiB
C
216 lines
5.7 KiB
C
/* Implementation of gamma function according to ISO C.
|
|
Copyright (C) 1997-2023 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <float.h>
|
|
#include <libm-alias-finite.h>
|
|
|
|
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
|
|
approximation to gamma function. */
|
|
|
|
static const float gamma_coeff[] =
|
|
{
|
|
0x1.555556p-4f,
|
|
-0xb.60b61p-12f,
|
|
0x3.403404p-12f,
|
|
};
|
|
|
|
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
|
|
|
|
/* Return gamma (X), for positive X less than 42, in the form R *
|
|
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
|
|
avoid overflow or underflow in intermediate calculations. */
|
|
|
|
static float
|
|
gammaf_positive (float x, int *exp2_adj)
|
|
{
|
|
int local_signgam;
|
|
if (x < 0.5f)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
|
|
}
|
|
else if (x <= 1.5f)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
|
|
}
|
|
else if (x < 2.5f)
|
|
{
|
|
*exp2_adj = 0;
|
|
float x_adj = x - 1;
|
|
return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
|
|
* x_adj);
|
|
}
|
|
else
|
|
{
|
|
float eps = 0;
|
|
float x_eps = 0;
|
|
float x_adj = x;
|
|
float prod = 1;
|
|
if (x < 4.0f)
|
|
{
|
|
/* Adjust into the range for applying Stirling's
|
|
approximation. */
|
|
float n = ceilf (4.0f - x);
|
|
x_adj = math_narrow_eval (x + n);
|
|
x_eps = (x - (x_adj - n));
|
|
prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
|
|
}
|
|
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
|
|
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
|
|
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
|
|
factored out. */
|
|
float exp_adj = -eps;
|
|
float x_adj_int = roundf (x_adj);
|
|
float x_adj_frac = x_adj - x_adj_int;
|
|
int x_adj_log2;
|
|
float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
|
|
if (x_adj_mant < M_SQRT1_2f)
|
|
{
|
|
x_adj_log2--;
|
|
x_adj_mant *= 2.0f;
|
|
}
|
|
*exp2_adj = x_adj_log2 * (int) x_adj_int;
|
|
float ret = (__ieee754_powf (x_adj_mant, x_adj)
|
|
* __ieee754_exp2f (x_adj_log2 * x_adj_frac)
|
|
* __ieee754_expf (-x_adj)
|
|
* sqrtf (2 * M_PIf / x_adj)
|
|
/ prod);
|
|
exp_adj += x_eps * __ieee754_logf (x_adj);
|
|
float bsum = gamma_coeff[NCOEFF - 1];
|
|
float x_adj2 = x_adj * x_adj;
|
|
for (size_t i = 1; i <= NCOEFF - 1; i++)
|
|
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
|
|
exp_adj += bsum / x_adj;
|
|
return ret + ret * __expm1f (exp_adj);
|
|
}
|
|
}
|
|
|
|
float
|
|
__ieee754_gammaf_r (float x, int *signgamp)
|
|
{
|
|
int32_t hx;
|
|
float ret;
|
|
|
|
GET_FLOAT_WORD (hx, x);
|
|
|
|
if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
|
|
{
|
|
/* Return value for x == 0 is Inf with divide by zero exception. */
|
|
*signgamp = 0;
|
|
return 1.0 / x;
|
|
}
|
|
if (__builtin_expect (hx < 0, 0)
|
|
&& (uint32_t) hx < 0xff800000 && rintf (x) == x)
|
|
{
|
|
/* Return value for integer x < 0 is NaN with invalid exception. */
|
|
*signgamp = 0;
|
|
return (x - x) / (x - x);
|
|
}
|
|
if (__glibc_unlikely (hx == 0xff800000))
|
|
{
|
|
/* x == -Inf. According to ISO this is NaN. */
|
|
*signgamp = 0;
|
|
return x - x;
|
|
}
|
|
if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
|
|
{
|
|
/* Positive infinity (return positive infinity) or NaN (return
|
|
NaN). */
|
|
*signgamp = 0;
|
|
return x + x;
|
|
}
|
|
|
|
if (x >= 36.0f)
|
|
{
|
|
/* Overflow. */
|
|
*signgamp = 0;
|
|
ret = math_narrow_eval (FLT_MAX * FLT_MAX);
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
SET_RESTORE_ROUNDF (FE_TONEAREST);
|
|
if (x > 0.0f)
|
|
{
|
|
*signgamp = 0;
|
|
int exp2_adj;
|
|
float tret = gammaf_positive (x, &exp2_adj);
|
|
ret = __scalbnf (tret, exp2_adj);
|
|
}
|
|
else if (x >= -FLT_EPSILON / 4.0f)
|
|
{
|
|
*signgamp = 0;
|
|
ret = 1.0f / x;
|
|
}
|
|
else
|
|
{
|
|
float tx = truncf (x);
|
|
*signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1;
|
|
if (x <= -42.0f)
|
|
/* Underflow. */
|
|
ret = FLT_MIN * FLT_MIN;
|
|
else
|
|
{
|
|
float frac = tx - x;
|
|
if (frac > 0.5f)
|
|
frac = 1.0f - frac;
|
|
float sinpix = (frac <= 0.25f
|
|
? __sinf (M_PIf * frac)
|
|
: __cosf (M_PIf * (0.5f - frac)));
|
|
int exp2_adj;
|
|
float tret = M_PIf / (-x * sinpix
|
|
* gammaf_positive (-x, &exp2_adj));
|
|
ret = __scalbnf (tret, -exp2_adj);
|
|
math_check_force_underflow_nonneg (ret);
|
|
}
|
|
}
|
|
ret = math_narrow_eval (ret);
|
|
}
|
|
if (isinf (ret) && x != 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX);
|
|
return ret;
|
|
}
|
|
else if (ret == 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
|
|
return ret;
|
|
}
|
|
else
|
|
return ret;
|
|
}
|
|
libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)
|