mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-11 20:00:07 +00:00
1ed0291c31
Entire tree edited via find | grep | sed.
205 lines
5.0 KiB
C
205 lines
5.0 KiB
C
/* e_jnf.c -- float version of e_jn.c.
|
|
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
|
|
*/
|
|
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
|
|
static const float
|
|
two = 2.0000000000e+00, /* 0x40000000 */
|
|
one = 1.0000000000e+00; /* 0x3F800000 */
|
|
|
|
static const float zero = 0.0000000000e+00;
|
|
|
|
float
|
|
__ieee754_jnf(int n, float x)
|
|
{
|
|
int32_t i,hx,ix, sgn;
|
|
float a, b, temp, di;
|
|
float z, w;
|
|
|
|
/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
|
|
* Thus, J(-n,x) = J(n,-x)
|
|
*/
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = 0x7fffffff&hx;
|
|
/* if J(n,NaN) is NaN */
|
|
if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
|
|
if(n<0){
|
|
n = -n;
|
|
x = -x;
|
|
hx ^= 0x80000000;
|
|
}
|
|
if(n==0) return(__ieee754_j0f(x));
|
|
if(n==1) return(__ieee754_j1f(x));
|
|
sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */
|
|
x = fabsf(x);
|
|
if(__builtin_expect(ix==0||ix>=0x7f800000, 0)) /* if x is 0 or inf */
|
|
b = zero;
|
|
else if((float)n<=x) {
|
|
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
|
|
a = __ieee754_j0f(x);
|
|
b = __ieee754_j1f(x);
|
|
for(i=1;i<n;i++){
|
|
temp = b;
|
|
b = b*((float)(i+i)/x) - a; /* avoid underflow */
|
|
a = temp;
|
|
}
|
|
} else {
|
|
if(ix<0x30800000) { /* x < 2**-29 */
|
|
/* x is tiny, return the first Taylor expansion of J(n,x)
|
|
* J(n,x) = 1/n!*(x/2)^n - ...
|
|
*/
|
|
if(n>33) /* underflow */
|
|
b = zero;
|
|
else {
|
|
temp = x*(float)0.5; b = temp;
|
|
for (a=one,i=2;i<=n;i++) {
|
|
a *= (float)i; /* a = n! */
|
|
b *= temp; /* b = (x/2)^n */
|
|
}
|
|
b = b/a;
|
|
}
|
|
} else {
|
|
/* use backward recurrence */
|
|
/* x x^2 x^2
|
|
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
* 2n - 2(n+1) - 2(n+2)
|
|
*
|
|
* 1 1 1
|
|
* (for large x) = ---- ------ ------ .....
|
|
* 2n 2(n+1) 2(n+2)
|
|
* -- - ------ - ------ -
|
|
* x x x
|
|
*
|
|
* Let w = 2n/x and h=2/x, then the above quotient
|
|
* is equal to the continued fraction:
|
|
* 1
|
|
* = -----------------------
|
|
* 1
|
|
* w - -----------------
|
|
* 1
|
|
* w+h - ---------
|
|
* w+2h - ...
|
|
*
|
|
* To determine how many terms needed, let
|
|
* Q(0) = w, Q(1) = w(w+h) - 1,
|
|
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
* When Q(k) > 1e4 good for single
|
|
* When Q(k) > 1e9 good for double
|
|
* When Q(k) > 1e17 good for quadruple
|
|
*/
|
|
/* determine k */
|
|
float t,v;
|
|
float q0,q1,h,tmp; int32_t k,m;
|
|
w = (n+n)/(float)x; h = (float)2.0/(float)x;
|
|
q0 = w; z = w+h; q1 = w*z - (float)1.0; k=1;
|
|
while(q1<(float)1.0e9) {
|
|
k += 1; z += h;
|
|
tmp = z*q1 - q0;
|
|
q0 = q1;
|
|
q1 = tmp;
|
|
}
|
|
m = n+n;
|
|
for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
|
|
a = t;
|
|
b = one;
|
|
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
|
|
* Hence, if n*(log(2n/x)) > ...
|
|
* single 8.8722839355e+01
|
|
* double 7.09782712893383973096e+02
|
|
* long double 1.1356523406294143949491931077970765006170e+04
|
|
* then recurrent value may overflow and the result is
|
|
* likely underflow to zero
|
|
*/
|
|
tmp = n;
|
|
v = two/x;
|
|
tmp = tmp*__ieee754_logf(fabsf(v*tmp));
|
|
if(tmp<(float)8.8721679688e+01) {
|
|
for(i=n-1,di=(float)(i+i);i>0;i--){
|
|
temp = b;
|
|
b *= di;
|
|
b = b/x - a;
|
|
a = temp;
|
|
di -= two;
|
|
}
|
|
} else {
|
|
for(i=n-1,di=(float)(i+i);i>0;i--){
|
|
temp = b;
|
|
b *= di;
|
|
b = b/x - a;
|
|
a = temp;
|
|
di -= two;
|
|
/* scale b to avoid spurious overflow */
|
|
if(b>(float)1e10) {
|
|
a /= b;
|
|
t /= b;
|
|
b = one;
|
|
}
|
|
}
|
|
}
|
|
/* j0() and j1() suffer enormous loss of precision at and
|
|
* near zero; however, we know that their zero points never
|
|
* coincide, so just choose the one further away from zero.
|
|
*/
|
|
z = __ieee754_j0f (x);
|
|
w = __ieee754_j1f (x);
|
|
if (fabsf (z) >= fabsf (w))
|
|
b = (t * z / b);
|
|
else
|
|
b = (t * w / a);
|
|
}
|
|
}
|
|
if(sgn==1) return -b; else return b;
|
|
}
|
|
strong_alias (__ieee754_jnf, __jnf_finite)
|
|
|
|
float
|
|
__ieee754_ynf(int n, float x)
|
|
{
|
|
int32_t i,hx,ix;
|
|
u_int32_t ib;
|
|
int32_t sign;
|
|
float a, b, temp;
|
|
|
|
GET_FLOAT_WORD(hx,x);
|
|
ix = 0x7fffffff&hx;
|
|
/* if Y(n,NaN) is NaN */
|
|
if(__builtin_expect(ix>0x7f800000, 0)) return x+x;
|
|
if(__builtin_expect(ix==0, 0))
|
|
return -HUGE_VALF+x; /* -inf and overflow exception. */
|
|
if(__builtin_expect(hx<0, 0)) return zero/(zero*x);
|
|
sign = 1;
|
|
if(n<0){
|
|
n = -n;
|
|
sign = 1 - ((n&1)<<1);
|
|
}
|
|
if(n==0) return(__ieee754_y0f(x));
|
|
if(n==1) return(sign*__ieee754_y1f(x));
|
|
if(__builtin_expect(ix==0x7f800000, 0)) return zero;
|
|
|
|
a = __ieee754_y0f(x);
|
|
b = __ieee754_y1f(x);
|
|
/* quit if b is -inf */
|
|
GET_FLOAT_WORD(ib,b);
|
|
for(i=1;i<n&&ib!=0xff800000;i++){
|
|
temp = b;
|
|
b = ((float)(i+i)/x)*b - a;
|
|
GET_FLOAT_WORD(ib,b);
|
|
a = temp;
|
|
}
|
|
if(sign>0) return b; else return -b;
|
|
}
|
|
strong_alias (__ieee754_ynf, __ynf_finite)
|