mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-02 01:40:07 +00:00
ba5b14c761
When new symbol versions were introduced without SVID compatible error handling the exp2f, log2f and powf symbols were accidentally removed from the ia64 lim.a. The regression was introduced by the commitsf5f0f52651
New expf and exp2f version without SVID compat wrapper72d3d28108
New symbol version for logf, log2f and powf without SVID compat With WEAK_LIBM_ENTRY(foo), there is a hidden __foo and weak foo symbol definition in both SHARED and !SHARED build. [BZ #23822] * sysdeps/ia64/fpu/e_exp2f.S (exp2f): Use WEAK_LIBM_ENTRY. * sysdeps/ia64/fpu/e_log2f.S (log2f): Likewise. * sysdeps/ia64/fpu/e_exp2f.S (powf): Likewise.
2073 lines
66 KiB
ArmAsm
2073 lines
66 KiB
ArmAsm
.file "powf.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/02/00 Initial version
|
|
// 02/03/00 Added p12 to definite over/under path. With odd power we did not
|
|
// maintain the sign of x in this path.
|
|
// 04/04/00 Unwind support added
|
|
// 04/19/00 pow(+-1,inf) now returns NaN
|
|
// pow(+-val, +-inf) returns 0 or inf, but now does not call error
|
|
// support
|
|
// Added s1 to fcvt.fx because invalid flag was incorrectly set.
|
|
// 08/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
// 09/07/00 Improved performance by eliminating bank conflicts and other stalls,
|
|
// and tweaking the critical path
|
|
// 09/08/00 Per c99, pow(+-1,inf) now returns 1, and pow(+1,nan) returns 1
|
|
// 09/28/00 Updated NaN**0 path
|
|
// 01/20/01 Fixed denormal flag settings.
|
|
// 02/13/01 Improved speed.
|
|
// 03/19/01 Reordered exp polynomial to improve speed and eliminate monotonicity
|
|
// problem in round up, down, and to zero modes. Also corrected
|
|
// overflow result when x negative, y odd in round up, down, zero.
|
|
// 06/14/01 Added brace missing from bundle
|
|
// 12/10/01 Corrected case where x negative, 2^23 <= |y| < 2^24, y odd integer.
|
|
// 02/08/02 Fixed overflow/underflow cases that were not calling error support.
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 08/29/02 Improved Itanium 2 performance
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
|
// 10/09/03 Modified algorithm to improve performance, reduce table size, and
|
|
// fix boundary case powf(2.0,-150.0)
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
//
|
|
// API
|
|
//==============================================================
|
|
// float powf(float x, float y)
|
|
//
|
|
// Overview of operation
|
|
//==============================================================
|
|
//
|
|
// Three steps...
|
|
// 1. Log(x)
|
|
// 2. y Log(x)
|
|
// 3. exp(y log(x))
|
|
//
|
|
// This means we work with the absolute value of x and merge in the sign later.
|
|
// Log(x) = G + delta + r -rsq/2 + p
|
|
// G,delta depend on the exponent of x and table entries. The table entries are
|
|
// indexed by the exponent of x, called K.
|
|
//
|
|
// The G and delta come out of the reduction; r is the reduced x.
|
|
//
|
|
// B = frcpa(x)
|
|
// xB-1 is small means that B is the approximate inverse of x.
|
|
//
|
|
// Log(x) = Log( (1/B)(Bx) )
|
|
// = Log(1/B) + Log(Bx)
|
|
// = Log(1/B) + Log( 1 + (Bx-1))
|
|
//
|
|
// x = 2^K 1.x_1x_2.....x_52
|
|
// B= frcpa(x) = 2^-k Cm
|
|
// Log(1/B) = Log(1/(2^-K Cm))
|
|
// Log(1/B) = Log((2^K/ Cm))
|
|
// Log(1/B) = K Log(2) + Log(1/Cm)
|
|
//
|
|
// Log(x) = K Log(2) + Log(1/Cm) + Log( 1 + (Bx-1))
|
|
//
|
|
// If you take the significand of x, set the exponent to true 0, then Cm is
|
|
// the frcpa. We tabulate the Log(1/Cm) values. There are 256 of them.
|
|
// The frcpa table is indexed by 8 bits, the x_1 thru x_8.
|
|
// m = x_1x_2...x_8 is an 8-bit index.
|
|
//
|
|
// Log(1/Cm) = log(1/frcpa(1+m/256)) where m goes from 0 to 255.
|
|
//
|
|
// We tabluate as one double, T for single precision power
|
|
//
|
|
// Log(x) = (K Log(2)_hi + T) + (K Log(2)_lo) + Log( 1 + (Bx-1))
|
|
// Log(x) = G + delta + Log( 1 + (Bx-1))
|
|
//
|
|
// The Log( 1 + (Bx-1)) can be calculated as a series in r = Bx-1.
|
|
//
|
|
// Log( 1 + (Bx-1)) = r - rsq/2 + p
|
|
// where p = r^3(P0 + P1*r + P2*r^2)
|
|
//
|
|
// Then,
|
|
//
|
|
// yLog(x) = yG + y delta + y(r-rsq/2) + yp
|
|
// yLog(x) = Z1 + e3 + Z2 + Z3
|
|
//
|
|
//
|
|
// exp(yLog(x)) = exp(Z1 + Z2) exp(Z3) exp(e3)
|
|
//
|
|
//
|
|
// exp(Z3) is another series.
|
|
// exp(e3) is approximated as f3 = 1 + e3
|
|
//
|
|
// exp(Z1 + Z2) = exp(Z)
|
|
// Z (128/log2) = number of log2/128 in Z is N
|
|
//
|
|
// s = Z - N log2/128
|
|
//
|
|
// exp(Z) = exp(s) exp(N log2/128)
|
|
//
|
|
// exp(r) = exp(Z - N log2/128)
|
|
//
|
|
// r = s + d = (Z - N (log2/128)_hi) -N (log2/128)_lo
|
|
// = Z - N (log2/128)
|
|
//
|
|
// Z = s+d +N (log2/128)
|
|
//
|
|
// exp(Z) = exp(s) (1+d) exp(N log2/128)
|
|
//
|
|
// N = M 128 + n
|
|
//
|
|
// N log2/128 = M log2 + n log2/128
|
|
//
|
|
// n is 8 binary digits = n_7n_6...n_1
|
|
//
|
|
// n log2/128 = n_7n_6n_5 16 log2/128 + n_4n_3n_2n_1 log2/128
|
|
// n log2/128 = n_7n_6n_5 log2/8 + n_4n_3n_2n_1 log2/128
|
|
// n log2/128 = I2 log2/8 + I1 log2/128
|
|
//
|
|
// N log2/128 = M log2 + I2 log2/8 + I1 log2/128
|
|
//
|
|
// exp(Z) = exp(s) (1+d) exp(log(2^M) + log(2^I2/8) + log(2^I1/128))
|
|
// exp(Z) = exp(s) f12 (2^M) 2^I2/8 2^I1/128
|
|
//
|
|
// I1, I2 are table indices. Use a series for exp(s).
|
|
// Then get exp(Z)
|
|
//
|
|
// exp(yLog(x)) = exp(Z) exp(Z3) f3
|
|
// exp(yLog(x)) = exp(Z)f3 exp(Z3)
|
|
// exp(yLog(x)) = A exp(Z3)
|
|
//
|
|
// We actually calculate exp(Z3) -1.
|
|
// Then,
|
|
// exp(yLog(x)) = A + A( exp(Z3) -1)
|
|
//
|
|
|
|
// Table Generation
|
|
//==============================================================
|
|
|
|
// The log values
|
|
// ==============
|
|
// The operation (K*log2_hi) must be exact. K is the true exponent of x.
|
|
// If we allow gradual underflow (denormals), K can be represented in 12 bits
|
|
// (as a two's complement number). We assume 13 bits as an engineering
|
|
// precaution.
|
|
//
|
|
// +------------+----------------+-+
|
|
// | 13 bits | 50 bits | |
|
|
// +------------+----------------+-+
|
|
// 0 1 66
|
|
// 2 34
|
|
//
|
|
// So we want the lsb(log2_hi) to be 2^-50
|
|
// We get log2 as a quad-extended (15-bit exponent, 128-bit significand)
|
|
//
|
|
// 0 fffe b17217f7d1cf79ab c9e3b39803f2f6af (4...)
|
|
//
|
|
// Consider numbering the bits left to right, starting at 0 thru 127.
|
|
// Bit 0 is the 2^-1 bit; bit 49 is the 2^-50 bit.
|
|
//
|
|
// ...79ab
|
|
// 0111 1001 1010 1011
|
|
// 44
|
|
// 89
|
|
//
|
|
// So if we shift off the rightmost 14 bits, then (shift back only
|
|
// the top half) we get
|
|
//
|
|
// 0 fffe b17217f7d1cf4000 e6af278ece600fcb dabc000000000000
|
|
//
|
|
// Put the right 64-bit signficand in an FR register, convert to double;
|
|
// it is exact. Put the next 128 bits into a quad register and round to double.
|
|
// The true exponent of the low part is -51.
|
|
//
|
|
// hi is 0 fffe b17217f7d1cf4000
|
|
// lo is 0 ffcc e6af278ece601000
|
|
//
|
|
// Convert to double memory format and get
|
|
//
|
|
// hi is 0x3fe62e42fefa39e8
|
|
// lo is 0x3cccd5e4f1d9cc02
|
|
//
|
|
// log2_hi + log2_lo is an accurate value for log2.
|
|
//
|
|
//
|
|
// The T and t values
|
|
// ==================
|
|
// A similar method is used to generate the T and t values.
|
|
//
|
|
// K * log2_hi + T must be exact.
|
|
//
|
|
// Smallest T,t
|
|
// ----------
|
|
// The smallest T,t is
|
|
// T t
|
|
// 0x3f60040155d58800, 0x3c93bce0ce3ddd81 log(1/frcpa(1+0/256))= +1.95503e-003
|
|
//
|
|
// The exponent is 0x3f6 (biased) or -9 (true).
|
|
// For the smallest T value, what we want is to clip the significand such that
|
|
// when it is shifted right by 9, its lsb is in the bit for 2^-51. The 9 is the
|
|
// specific for the first entry. In general, it is 0xffff - (biased 15-bit
|
|
// exponent).
|
|
|
|
// Independently, what we have calculated is the table value as a quad
|
|
// precision number.
|
|
// Table entry 1 is
|
|
// 0 fff6 80200aaeac44ef38 338f77605fdf8000
|
|
//
|
|
// We store this quad precision number in a data structure that is
|
|
// sign: 1
|
|
// exponent: 15
|
|
// signficand_hi: 64 (includes explicit bit)
|
|
// signficand_lo: 49
|
|
// Because the explicit bit is included, the significand is 113 bits.
|
|
//
|
|
// Consider significand_hi for table entry 1.
|
|
//
|
|
//
|
|
// +-+--- ... -------+--------------------+
|
|
// | |
|
|
// +-+--- ... -------+--------------------+
|
|
// 0 1 4444444455555555556666
|
|
// 2345678901234567890123
|
|
//
|
|
// Labeled as above, bit 0 is 2^0, bit 1 is 2^-1, etc.
|
|
// Bit 42 is 2^-42. If we shift to the right by 9, the bit in
|
|
// bit 42 goes in 51.
|
|
//
|
|
// So what we want to do is shift bits 43 thru 63 into significand_lo.
|
|
// This is shifting bit 42 into bit 63, taking care to retain shifted-off bits.
|
|
// Then shifting (just with signficaand_hi) back into bit 42.
|
|
//
|
|
// The shift_value is 63-42 = 21. In general, this is
|
|
// 63 - (51 -(0xffff - 0xfff6))
|
|
// For this example, it is
|
|
// 63 - (51 - 9) = 63 - 42 = 21
|
|
//
|
|
// This means we are shifting 21 bits into significand_lo. We must maintain more
|
|
// that a 128-bit signficand not to lose bits. So before the shift we put the
|
|
// 128-bit significand into a 256-bit signficand and then shift.
|
|
// The 256-bit significand has four parts: hh, hl, lh, and ll.
|
|
//
|
|
// Start off with
|
|
// hh hl lh ll
|
|
// <64> <49><15_0> <64_0> <64_0>
|
|
//
|
|
// After shift by 21 (then return for significand_hi),
|
|
// <43><21_0> <21><43> <6><58_0> <64_0>
|
|
//
|
|
// Take the hh part and convert to a double. There is no rounding here.
|
|
// The conversion is exact. The true exponent of the high part is the same as
|
|
// the true exponent of the input quad.
|
|
//
|
|
// We have some 64 plus significand bits for the low part. In this example, we
|
|
// have 70 bits. We want to round this to a double. Put them in a quad and then
|
|
// do a quad fnorm.
|
|
// For this example the true exponent of the low part is
|
|
// true_exponent_of_high - 43 = true_exponent_of_high - (64-21)
|
|
// In general, this is
|
|
// true_exponent_of_high - (64 - shift_value)
|
|
//
|
|
//
|
|
// Largest T,t
|
|
// ----------
|
|
// The largest T,t is
|
|
// 0x3fe62643fecf9742, 0x3c9e3147684bd37d log(1/frcpa(1+255/256))=+6.92171e-001
|
|
//
|
|
// Table entry 256 is
|
|
// 0 fffe b1321ff67cba178c 51da12f4df5a0000
|
|
//
|
|
// The shift value is
|
|
// 63 - (51 -(0xffff - 0xfffe)) = 13
|
|
//
|
|
// The true exponent of the low part is
|
|
// true_exponent_of_high - (64 - shift_value)
|
|
// -1 - (64-13) = -52
|
|
// Biased as a double, this is 0x3cb
|
|
//
|
|
//
|
|
//
|
|
// So then lsb(T) must be >= 2^-51
|
|
// msb(Klog2_hi) <= 2^12
|
|
//
|
|
// +--------+---------+
|
|
// | 51 bits | <== largest T
|
|
// +--------+---------+
|
|
// | 9 bits | 42 bits | <== smallest T
|
|
// +------------+----------------+-+
|
|
// | 13 bits | 50 bits | |
|
|
// +------------+----------------+-+
|
|
//
|
|
// Note: For powf only the table of T is needed
|
|
|
|
|
|
// Special Cases
|
|
//==============================================================
|
|
|
|
// double float
|
|
// overflow error 24 30
|
|
|
|
// underflow error 25 31
|
|
|
|
// X zero Y zero
|
|
// +0 +0 +1 error 26 32
|
|
// -0 +0 +1 error 26 32
|
|
// +0 -0 +1 error 26 32
|
|
// -0 -0 +1 error 26 32
|
|
|
|
// X zero Y negative
|
|
// +0 -odd integer +inf error 27 33 divide-by-zero
|
|
// -0 -odd integer -inf error 27 33 divide-by-zero
|
|
// +0 !-odd integer +inf error 27 33 divide-by-zero
|
|
// -0 !-odd integer +inf error 27 33 divide-by-zero
|
|
// +0 -inf +inf error 27 33 divide-by-zero
|
|
// -0 -inf +inf error 27 33 divide-by-zero
|
|
|
|
// X zero Y positve
|
|
// +0 +odd integer +0
|
|
// -0 +odd integer -0
|
|
// +0 !+odd integer +0
|
|
// -0 !+odd integer +0
|
|
// +0 +inf +0
|
|
// -0 +inf +0
|
|
// +0 Y NaN quiet Y invalid if Y SNaN
|
|
// -0 Y NaN quiet Y invalid if Y SNaN
|
|
|
|
// X one
|
|
// -1 Y inf +1
|
|
// -1 Y NaN quiet Y invalid if Y SNaN
|
|
// +1 Y NaN +1 invalid if Y SNaN
|
|
// +1 Y any else +1
|
|
|
|
// X - Y not integer QNAN error 28 34 invalid
|
|
|
|
// X NaN Y 0 +1 error 29 35
|
|
// X NaN Y NaN quiet X invalid if X or Y SNaN
|
|
// X NaN Y any else quiet X invalid if X SNaN
|
|
// X !+1 Y NaN quiet Y invalid if Y SNaN
|
|
|
|
|
|
// X +inf Y >0 +inf
|
|
// X -inf Y >0, !odd integer +inf
|
|
// X -inf Y >0, odd integer -inf
|
|
|
|
// X +inf Y <0 +0
|
|
// X -inf Y <0, !odd integer +0
|
|
// X -inf Y <0, odd integer -0
|
|
|
|
// X +inf Y =0 +1
|
|
// X -inf Y =0 +1
|
|
|
|
// |X|<1 Y +inf +0
|
|
// |X|<1 Y -inf +inf
|
|
// |X|>1 Y +inf +inf
|
|
// |X|>1 Y -inf +0
|
|
|
|
// X any Y =0 +1
|
|
|
|
// Assembly macros
|
|
//==============================================================
|
|
|
|
// integer registers used
|
|
|
|
pow_GR_exp_half = r10
|
|
pow_GR_signexp_Xm1 = r11
|
|
pow_GR_tmp = r11
|
|
|
|
pow_GR_signexp_X = r14
|
|
pow_GR_17ones = r15
|
|
pow_GR_Fpsr = r15
|
|
pow_AD_P = r16
|
|
pow_GR_rcs0_mask = r16
|
|
pow_GR_exp_2tom8 = r17
|
|
pow_GR_rcs0 = r17
|
|
pow_GR_sig_X = r18
|
|
pow_GR_10033 = r19
|
|
pow_GR_16ones = r20
|
|
|
|
pow_AD_Tt = r21
|
|
pow_GR_exp_X = r22
|
|
pow_AD_Q = r23
|
|
pow_GR_true_exp_X = r24
|
|
pow_GR_y_zero = r25
|
|
|
|
pow_GR_exp_Y = r26
|
|
pow_AD_tbl1 = r27
|
|
pow_AD_tbl2 = r28
|
|
pow_GR_offset = r29
|
|
pow_GR_exp_Xm1 = r30
|
|
pow_GR_xneg_yodd = r31
|
|
|
|
pow_GR_int_N = r38
|
|
pow_GR_index1 = r39
|
|
pow_GR_index2 = r40
|
|
|
|
pow_AD_T1 = r41
|
|
pow_AD_T2 = r42
|
|
pow_int_GR_M = r43
|
|
pow_GR_sig_int_Y = r44
|
|
pow_GR_sign_Y_Gpr = r45
|
|
|
|
pow_GR_17ones_m1 = r46
|
|
pow_GR_one = r47
|
|
pow_GR_sign_Y = r48
|
|
pow_GR_signexp_Y_Gpr = r49
|
|
pow_GR_exp_Y_Gpr = r50
|
|
|
|
pow_GR_true_exp_Y_Gpr = r51
|
|
pow_GR_signexp_Y = r52
|
|
pow_GR_x_one = r53
|
|
pow_GR_big_pos = r55
|
|
|
|
pow_GR_big_neg = r56
|
|
|
|
GR_SAVE_B0 = r50
|
|
GR_SAVE_GP = r51
|
|
GR_SAVE_PFS = r52
|
|
|
|
GR_Parameter_X = r53
|
|
GR_Parameter_Y = r54
|
|
GR_Parameter_RESULT = r55
|
|
pow_GR_tag = r56
|
|
|
|
|
|
// floating point registers used
|
|
|
|
POW_B = f32
|
|
POW_NORM_X = f33
|
|
POW_Xm1 = f34
|
|
POW_r1 = f34
|
|
|
|
POW_NORM_Y = f37
|
|
POW_Q2 = f38
|
|
POW_eps = f39
|
|
POW_P2 = f40
|
|
|
|
POW_P0 = f42
|
|
POW_log2_lo = f43
|
|
POW_r = f44
|
|
POW_Q0_half = f45
|
|
|
|
POW_tmp = f47
|
|
POW_log2_hi = f48
|
|
POW_Q1 = f49
|
|
POW_P1 = f50
|
|
|
|
POW_log2_by_128_hi = f51
|
|
POW_inv_log2_by_128 = f52
|
|
POW_rsq = f53
|
|
POW_Yrcub = f54
|
|
POW_log2_by_128_lo = f55
|
|
|
|
POW_xsq = f57
|
|
POW_v2 = f59
|
|
POW_T = f60
|
|
|
|
POW_RSHF = f62
|
|
POW_v210 = f63
|
|
POW_twoV = f65
|
|
|
|
POW_U = f66
|
|
POW_G = f67
|
|
POW_delta = f68
|
|
POW_V = f70
|
|
|
|
POW_p = f71
|
|
POW_Z = f72
|
|
POW_e3 = f73
|
|
POW_Z2 = f75
|
|
|
|
POW_W1 = f77
|
|
POW_Z3 = f80
|
|
|
|
POW_Z3sq = f85
|
|
|
|
POW_Nfloat = f87
|
|
POW_f3 = f89
|
|
POW_q = f90
|
|
|
|
POW_T1 = f96
|
|
POW_T2 = f97
|
|
POW_2M = f98
|
|
POW_s = f99
|
|
POW_f12 = f100
|
|
|
|
POW_ssq = f101
|
|
POW_T1T2 = f102
|
|
POW_1ps = f103
|
|
POW_A = f104
|
|
POW_es = f105
|
|
|
|
POW_Xp1 = f106
|
|
POW_int_K = f107
|
|
POW_K = f108
|
|
POW_f123 = f109
|
|
POW_Gpr = f110
|
|
|
|
POW_Y_Gpr = f111
|
|
POW_int_Y = f112
|
|
POW_2Mqp1 = f113
|
|
|
|
POW_float_int_Y = f116
|
|
POW_ftz_urm_f8 = f117
|
|
POW_wre_urm_f8 = f118
|
|
POW_big_neg = f119
|
|
POW_big_pos = f120
|
|
|
|
// Data tables
|
|
//==============================================================
|
|
|
|
RODATA
|
|
|
|
.align 16
|
|
|
|
LOCAL_OBJECT_START(pow_table_P)
|
|
data8 0x80000000000018E5, 0x0000BFFD // P_1
|
|
data8 0xb8aa3b295c17f0bc, 0x00004006 // inv_ln2_by_128
|
|
//
|
|
//
|
|
data8 0x3FA5555555554A9E // Q_2
|
|
data8 0x0000000000000000 // Pad
|
|
data8 0x3FC5555555554733 // Q_1
|
|
data8 0x43e8000000000000 // Right shift constant for exp
|
|
data8 0xc9e3b39803f2f6af, 0x00003fb7 // ln2_by_128_lo
|
|
LOCAL_OBJECT_END(pow_table_P)
|
|
|
|
LOCAL_OBJECT_START(pow_table_Q)
|
|
data8 0xCCCCCCCC4ED2BA7F, 0x00003FFC // P_2
|
|
data8 0xAAAAAAAAAAAAB505, 0x00003FFD // P_0
|
|
data8 0x3fe62e42fefa39e8, 0x3cccd5e4f1d9cc02 // log2 hi lo = +6.93147e-001
|
|
data8 0xb17217f7d1cf79ab, 0x00003ff7 // ln2_by_128_hi
|
|
LOCAL_OBJECT_END(pow_table_Q)
|
|
|
|
|
|
LOCAL_OBJECT_START(pow_Tt)
|
|
data8 0x3f60040155d58800 // log(1/frcpa(1+0/256))= +1.95503e-003
|
|
data8 0x3f78121214586a00 // log(1/frcpa(1+1/256))= +5.87661e-003
|
|
data8 0x3f841929f9683200 // log(1/frcpa(1+2/256))= +9.81362e-003
|
|
data8 0x3f8c317384c75f00 // log(1/frcpa(1+3/256))= +1.37662e-002
|
|
data8 0x3f91a6b91ac73380 // log(1/frcpa(1+4/256))= +1.72376e-002
|
|
data8 0x3f95ba9a5d9ac000 // log(1/frcpa(1+5/256))= +2.12196e-002
|
|
data8 0x3f99d2a807432580 // log(1/frcpa(1+6/256))= +2.52177e-002
|
|
data8 0x3f9d6b2725979800 // log(1/frcpa(1+7/256))= +2.87291e-002
|
|
data8 0x3fa0c58fa19dfa80 // log(1/frcpa(1+8/256))= +3.27573e-002
|
|
data8 0x3fa2954c78cbce00 // log(1/frcpa(1+9/256))= +3.62953e-002
|
|
data8 0x3fa4a94d2da96c40 // log(1/frcpa(1+10/256))= +4.03542e-002
|
|
data8 0x3fa67c94f2d4bb40 // log(1/frcpa(1+11/256))= +4.39192e-002
|
|
data8 0x3fa85188b630f040 // log(1/frcpa(1+12/256))= +4.74971e-002
|
|
data8 0x3faa6b8abe73af40 // log(1/frcpa(1+13/256))= +5.16017e-002
|
|
data8 0x3fac441e06f72a80 // log(1/frcpa(1+14/256))= +5.52072e-002
|
|
data8 0x3fae1e6713606d00 // log(1/frcpa(1+15/256))= +5.88257e-002
|
|
data8 0x3faffa6911ab9300 // log(1/frcpa(1+16/256))= +6.24574e-002
|
|
data8 0x3fb0ec139c5da600 // log(1/frcpa(1+17/256))= +6.61022e-002
|
|
data8 0x3fb1dbd2643d1900 // log(1/frcpa(1+18/256))= +6.97605e-002
|
|
data8 0x3fb2cc7284fe5f00 // log(1/frcpa(1+19/256))= +7.34321e-002
|
|
data8 0x3fb3bdf5a7d1ee60 // log(1/frcpa(1+20/256))= +7.71173e-002
|
|
data8 0x3fb4b05d7aa012e0 // log(1/frcpa(1+21/256))= +8.08161e-002
|
|
data8 0x3fb580db7ceb5700 // log(1/frcpa(1+22/256))= +8.39975e-002
|
|
data8 0x3fb674f089365a60 // log(1/frcpa(1+23/256))= +8.77219e-002
|
|
data8 0x3fb769ef2c6b5680 // log(1/frcpa(1+24/256))= +9.14602e-002
|
|
data8 0x3fb85fd927506a40 // log(1/frcpa(1+25/256))= +9.52125e-002
|
|
data8 0x3fb9335e5d594980 // log(1/frcpa(1+26/256))= +9.84401e-002
|
|
data8 0x3fba2b0220c8e5e0 // log(1/frcpa(1+27/256))= +1.02219e-001
|
|
data8 0x3fbb0004ac1a86a0 // log(1/frcpa(1+28/256))= +1.05469e-001
|
|
data8 0x3fbbf968769fca00 // log(1/frcpa(1+29/256))= +1.09274e-001
|
|
data8 0x3fbccfedbfee13a0 // log(1/frcpa(1+30/256))= +1.12548e-001
|
|
data8 0x3fbda727638446a0 // log(1/frcpa(1+31/256))= +1.15832e-001
|
|
data8 0x3fbea3257fe10f60 // log(1/frcpa(1+32/256))= +1.19677e-001
|
|
data8 0x3fbf7be9fedbfde0 // log(1/frcpa(1+33/256))= +1.22985e-001
|
|
data8 0x3fc02ab352ff25f0 // log(1/frcpa(1+34/256))= +1.26303e-001
|
|
data8 0x3fc097ce579d2040 // log(1/frcpa(1+35/256))= +1.29633e-001
|
|
data8 0x3fc1178e8227e470 // log(1/frcpa(1+36/256))= +1.33531e-001
|
|
data8 0x3fc185747dbecf30 // log(1/frcpa(1+37/256))= +1.36885e-001
|
|
data8 0x3fc1f3b925f25d40 // log(1/frcpa(1+38/256))= +1.40250e-001
|
|
data8 0x3fc2625d1e6ddf50 // log(1/frcpa(1+39/256))= +1.43627e-001
|
|
data8 0x3fc2d1610c868130 // log(1/frcpa(1+40/256))= +1.47015e-001
|
|
data8 0x3fc340c597411420 // log(1/frcpa(1+41/256))= +1.50414e-001
|
|
data8 0x3fc3b08b6757f2a0 // log(1/frcpa(1+42/256))= +1.53825e-001
|
|
data8 0x3fc40dfb08378000 // log(1/frcpa(1+43/256))= +1.56677e-001
|
|
data8 0x3fc47e74e8ca5f70 // log(1/frcpa(1+44/256))= +1.60109e-001
|
|
data8 0x3fc4ef51f6466de0 // log(1/frcpa(1+45/256))= +1.63553e-001
|
|
data8 0x3fc56092e02ba510 // log(1/frcpa(1+46/256))= +1.67010e-001
|
|
data8 0x3fc5d23857cd74d0 // log(1/frcpa(1+47/256))= +1.70478e-001
|
|
data8 0x3fc6313a37335d70 // log(1/frcpa(1+48/256))= +1.73377e-001
|
|
data8 0x3fc6a399dabbd380 // log(1/frcpa(1+49/256))= +1.76868e-001
|
|
data8 0x3fc70337dd3ce410 // log(1/frcpa(1+50/256))= +1.79786e-001
|
|
data8 0x3fc77654128f6120 // log(1/frcpa(1+51/256))= +1.83299e-001
|
|
data8 0x3fc7e9d82a0b0220 // log(1/frcpa(1+52/256))= +1.86824e-001
|
|
data8 0x3fc84a6b759f5120 // log(1/frcpa(1+53/256))= +1.89771e-001
|
|
data8 0x3fc8ab47d5f5a300 // log(1/frcpa(1+54/256))= +1.92727e-001
|
|
data8 0x3fc91fe490965810 // log(1/frcpa(1+55/256))= +1.96286e-001
|
|
data8 0x3fc981634011aa70 // log(1/frcpa(1+56/256))= +1.99261e-001
|
|
data8 0x3fc9f6c407089660 // log(1/frcpa(1+57/256))= +2.02843e-001
|
|
data8 0x3fca58e729348f40 // log(1/frcpa(1+58/256))= +2.05838e-001
|
|
data8 0x3fcabb55c31693a0 // log(1/frcpa(1+59/256))= +2.08842e-001
|
|
data8 0x3fcb1e104919efd0 // log(1/frcpa(1+60/256))= +2.11855e-001
|
|
data8 0x3fcb94ee93e367c0 // log(1/frcpa(1+61/256))= +2.15483e-001
|
|
data8 0x3fcbf851c0675550 // log(1/frcpa(1+62/256))= +2.18516e-001
|
|
data8 0x3fcc5c0254bf23a0 // log(1/frcpa(1+63/256))= +2.21558e-001
|
|
data8 0x3fccc000c9db3c50 // log(1/frcpa(1+64/256))= +2.24609e-001
|
|
data8 0x3fcd244d99c85670 // log(1/frcpa(1+65/256))= +2.27670e-001
|
|
data8 0x3fcd88e93fb2f450 // log(1/frcpa(1+66/256))= +2.30741e-001
|
|
data8 0x3fcdedd437eaef00 // log(1/frcpa(1+67/256))= +2.33820e-001
|
|
data8 0x3fce530effe71010 // log(1/frcpa(1+68/256))= +2.36910e-001
|
|
data8 0x3fceb89a1648b970 // log(1/frcpa(1+69/256))= +2.40009e-001
|
|
data8 0x3fcf1e75fadf9bd0 // log(1/frcpa(1+70/256))= +2.43117e-001
|
|
data8 0x3fcf84a32ead7c30 // log(1/frcpa(1+71/256))= +2.46235e-001
|
|
data8 0x3fcfeb2233ea07c0 // log(1/frcpa(1+72/256))= +2.49363e-001
|
|
data8 0x3fd028f9c7035c18 // log(1/frcpa(1+73/256))= +2.52501e-001
|
|
data8 0x3fd05c8be0d96358 // log(1/frcpa(1+74/256))= +2.55649e-001
|
|
data8 0x3fd085eb8f8ae790 // log(1/frcpa(1+75/256))= +2.58174e-001
|
|
data8 0x3fd0b9c8e32d1910 // log(1/frcpa(1+76/256))= +2.61339e-001
|
|
data8 0x3fd0edd060b78080 // log(1/frcpa(1+77/256))= +2.64515e-001
|
|
data8 0x3fd122024cf00638 // log(1/frcpa(1+78/256))= +2.67701e-001
|
|
data8 0x3fd14be2927aecd0 // log(1/frcpa(1+79/256))= +2.70257e-001
|
|
data8 0x3fd180618ef18ad8 // log(1/frcpa(1+80/256))= +2.73461e-001
|
|
data8 0x3fd1b50bbe2fc638 // log(1/frcpa(1+81/256))= +2.76675e-001
|
|
data8 0x3fd1df4cc7cf2428 // log(1/frcpa(1+82/256))= +2.79254e-001
|
|
data8 0x3fd214456d0eb8d0 // log(1/frcpa(1+83/256))= +2.82487e-001
|
|
data8 0x3fd23ec5991eba48 // log(1/frcpa(1+84/256))= +2.85081e-001
|
|
data8 0x3fd2740d9f870af8 // log(1/frcpa(1+85/256))= +2.88333e-001
|
|
data8 0x3fd29ecdabcdfa00 // log(1/frcpa(1+86/256))= +2.90943e-001
|
|
data8 0x3fd2d46602adcce8 // log(1/frcpa(1+87/256))= +2.94214e-001
|
|
data8 0x3fd2ff66b04ea9d0 // log(1/frcpa(1+88/256))= +2.96838e-001
|
|
data8 0x3fd335504b355a30 // log(1/frcpa(1+89/256))= +3.00129e-001
|
|
data8 0x3fd360925ec44f58 // log(1/frcpa(1+90/256))= +3.02769e-001
|
|
data8 0x3fd38bf1c3337e70 // log(1/frcpa(1+91/256))= +3.05417e-001
|
|
data8 0x3fd3c25277333180 // log(1/frcpa(1+92/256))= +3.08735e-001
|
|
data8 0x3fd3edf463c16838 // log(1/frcpa(1+93/256))= +3.11399e-001
|
|
data8 0x3fd419b423d5e8c0 // log(1/frcpa(1+94/256))= +3.14069e-001
|
|
data8 0x3fd44591e0539f48 // log(1/frcpa(1+95/256))= +3.16746e-001
|
|
data8 0x3fd47c9175b6f0a8 // log(1/frcpa(1+96/256))= +3.20103e-001
|
|
data8 0x3fd4a8b341552b08 // log(1/frcpa(1+97/256))= +3.22797e-001
|
|
data8 0x3fd4d4f390890198 // log(1/frcpa(1+98/256))= +3.25498e-001
|
|
data8 0x3fd501528da1f960 // log(1/frcpa(1+99/256))= +3.28206e-001
|
|
data8 0x3fd52dd06347d4f0 // log(1/frcpa(1+100/256))= +3.30921e-001
|
|
data8 0x3fd55a6d3c7b8a88 // log(1/frcpa(1+101/256))= +3.33644e-001
|
|
data8 0x3fd5925d2b112a58 // log(1/frcpa(1+102/256))= +3.37058e-001
|
|
data8 0x3fd5bf406b543db0 // log(1/frcpa(1+103/256))= +3.39798e-001
|
|
data8 0x3fd5ec433d5c35a8 // log(1/frcpa(1+104/256))= +3.42545e-001
|
|
data8 0x3fd61965cdb02c18 // log(1/frcpa(1+105/256))= +3.45300e-001
|
|
data8 0x3fd646a84935b2a0 // log(1/frcpa(1+106/256))= +3.48063e-001
|
|
data8 0x3fd6740add31de90 // log(1/frcpa(1+107/256))= +3.50833e-001
|
|
data8 0x3fd6a18db74a58c0 // log(1/frcpa(1+108/256))= +3.53610e-001
|
|
data8 0x3fd6cf31058670e8 // log(1/frcpa(1+109/256))= +3.56396e-001
|
|
data8 0x3fd6f180e852f0b8 // log(1/frcpa(1+110/256))= +3.58490e-001
|
|
data8 0x3fd71f5d71b894e8 // log(1/frcpa(1+111/256))= +3.61289e-001
|
|
data8 0x3fd74d5aefd66d58 // log(1/frcpa(1+112/256))= +3.64096e-001
|
|
data8 0x3fd77b79922bd378 // log(1/frcpa(1+113/256))= +3.66911e-001
|
|
data8 0x3fd7a9b9889f19e0 // log(1/frcpa(1+114/256))= +3.69734e-001
|
|
data8 0x3fd7d81b037eb6a0 // log(1/frcpa(1+115/256))= +3.72565e-001
|
|
data8 0x3fd8069e33827230 // log(1/frcpa(1+116/256))= +3.75404e-001
|
|
data8 0x3fd82996d3ef8bc8 // log(1/frcpa(1+117/256))= +3.77538e-001
|
|
data8 0x3fd85855776dcbf8 // log(1/frcpa(1+118/256))= +3.80391e-001
|
|
data8 0x3fd8873658327cc8 // log(1/frcpa(1+119/256))= +3.83253e-001
|
|
data8 0x3fd8aa75973ab8c8 // log(1/frcpa(1+120/256))= +3.85404e-001
|
|
data8 0x3fd8d992dc8824e0 // log(1/frcpa(1+121/256))= +3.88280e-001
|
|
data8 0x3fd908d2ea7d9510 // log(1/frcpa(1+122/256))= +3.91164e-001
|
|
data8 0x3fd92c59e79c0e50 // log(1/frcpa(1+123/256))= +3.93332e-001
|
|
data8 0x3fd95bd750ee3ed0 // log(1/frcpa(1+124/256))= +3.96231e-001
|
|
data8 0x3fd98b7811a3ee58 // log(1/frcpa(1+125/256))= +3.99138e-001
|
|
data8 0x3fd9af47f33d4068 // log(1/frcpa(1+126/256))= +4.01323e-001
|
|
data8 0x3fd9df270c1914a0 // log(1/frcpa(1+127/256))= +4.04245e-001
|
|
data8 0x3fda0325ed14fda0 // log(1/frcpa(1+128/256))= +4.06442e-001
|
|
data8 0x3fda33440224fa78 // log(1/frcpa(1+129/256))= +4.09379e-001
|
|
data8 0x3fda57725e80c380 // log(1/frcpa(1+130/256))= +4.11587e-001
|
|
data8 0x3fda87d0165dd198 // log(1/frcpa(1+131/256))= +4.14539e-001
|
|
data8 0x3fdaac2e6c03f890 // log(1/frcpa(1+132/256))= +4.16759e-001
|
|
data8 0x3fdadccc6fdf6a80 // log(1/frcpa(1+133/256))= +4.19726e-001
|
|
data8 0x3fdb015b3eb1e790 // log(1/frcpa(1+134/256))= +4.21958e-001
|
|
data8 0x3fdb323a3a635948 // log(1/frcpa(1+135/256))= +4.24941e-001
|
|
data8 0x3fdb56fa04462908 // log(1/frcpa(1+136/256))= +4.27184e-001
|
|
data8 0x3fdb881aa659bc90 // log(1/frcpa(1+137/256))= +4.30182e-001
|
|
data8 0x3fdbad0bef3db160 // log(1/frcpa(1+138/256))= +4.32437e-001
|
|
data8 0x3fdbd21297781c28 // log(1/frcpa(1+139/256))= +4.34697e-001
|
|
data8 0x3fdc039236f08818 // log(1/frcpa(1+140/256))= +4.37718e-001
|
|
data8 0x3fdc28cb1e4d32f8 // log(1/frcpa(1+141/256))= +4.39990e-001
|
|
data8 0x3fdc4e19b84723c0 // log(1/frcpa(1+142/256))= +4.42267e-001
|
|
data8 0x3fdc7ff9c74554c8 // log(1/frcpa(1+143/256))= +4.45311e-001
|
|
data8 0x3fdca57b64e9db00 // log(1/frcpa(1+144/256))= +4.47600e-001
|
|
data8 0x3fdccb130a5ceba8 // log(1/frcpa(1+145/256))= +4.49895e-001
|
|
data8 0x3fdcf0c0d18f3268 // log(1/frcpa(1+146/256))= +4.52194e-001
|
|
data8 0x3fdd232075b5a200 // log(1/frcpa(1+147/256))= +4.55269e-001
|
|
data8 0x3fdd490246defa68 // log(1/frcpa(1+148/256))= +4.57581e-001
|
|
data8 0x3fdd6efa918d25c8 // log(1/frcpa(1+149/256))= +4.59899e-001
|
|
data8 0x3fdd9509707ae528 // log(1/frcpa(1+150/256))= +4.62221e-001
|
|
data8 0x3fddbb2efe92c550 // log(1/frcpa(1+151/256))= +4.64550e-001
|
|
data8 0x3fddee2f3445e4a8 // log(1/frcpa(1+152/256))= +4.67663e-001
|
|
data8 0x3fde148a1a2726c8 // log(1/frcpa(1+153/256))= +4.70004e-001
|
|
data8 0x3fde3afc0a49ff38 // log(1/frcpa(1+154/256))= +4.72350e-001
|
|
data8 0x3fde6185206d5168 // log(1/frcpa(1+155/256))= +4.74702e-001
|
|
data8 0x3fde882578823d50 // log(1/frcpa(1+156/256))= +4.77060e-001
|
|
data8 0x3fdeaedd2eac9908 // log(1/frcpa(1+157/256))= +4.79423e-001
|
|
data8 0x3fded5ac5f436be0 // log(1/frcpa(1+158/256))= +4.81792e-001
|
|
data8 0x3fdefc9326d16ab8 // log(1/frcpa(1+159/256))= +4.84166e-001
|
|
data8 0x3fdf2391a21575f8 // log(1/frcpa(1+160/256))= +4.86546e-001
|
|
data8 0x3fdf4aa7ee031928 // log(1/frcpa(1+161/256))= +4.88932e-001
|
|
data8 0x3fdf71d627c30bb0 // log(1/frcpa(1+162/256))= +4.91323e-001
|
|
data8 0x3fdf991c6cb3b378 // log(1/frcpa(1+163/256))= +4.93720e-001
|
|
data8 0x3fdfc07ada69a908 // log(1/frcpa(1+164/256))= +4.96123e-001
|
|
data8 0x3fdfe7f18eb03d38 // log(1/frcpa(1+165/256))= +4.98532e-001
|
|
data8 0x3fe007c053c5002c // log(1/frcpa(1+166/256))= +5.00946e-001
|
|
data8 0x3fe01b942198a5a0 // log(1/frcpa(1+167/256))= +5.03367e-001
|
|
data8 0x3fe02f74400c64e8 // log(1/frcpa(1+168/256))= +5.05793e-001
|
|
data8 0x3fe04360be7603ac // log(1/frcpa(1+169/256))= +5.08225e-001
|
|
data8 0x3fe05759ac47fe30 // log(1/frcpa(1+170/256))= +5.10663e-001
|
|
data8 0x3fe06b5f1911cf50 // log(1/frcpa(1+171/256))= +5.13107e-001
|
|
data8 0x3fe078bf0533c568 // log(1/frcpa(1+172/256))= +5.14740e-001
|
|
data8 0x3fe08cd9687e7b0c // log(1/frcpa(1+173/256))= +5.17194e-001
|
|
data8 0x3fe0a10074cf9018 // log(1/frcpa(1+174/256))= +5.19654e-001
|
|
data8 0x3fe0b5343a234474 // log(1/frcpa(1+175/256))= +5.22120e-001
|
|
data8 0x3fe0c974c89431cc // log(1/frcpa(1+176/256))= +5.24592e-001
|
|
data8 0x3fe0ddc2305b9884 // log(1/frcpa(1+177/256))= +5.27070e-001
|
|
data8 0x3fe0eb524bafc918 // log(1/frcpa(1+178/256))= +5.28726e-001
|
|
data8 0x3fe0ffb54213a474 // log(1/frcpa(1+179/256))= +5.31214e-001
|
|
data8 0x3fe114253da97d9c // log(1/frcpa(1+180/256))= +5.33709e-001
|
|
data8 0x3fe128a24f1d9afc // log(1/frcpa(1+181/256))= +5.36210e-001
|
|
data8 0x3fe1365252bf0864 // log(1/frcpa(1+182/256))= +5.37881e-001
|
|
data8 0x3fe14ae558b4a92c // log(1/frcpa(1+183/256))= +5.40393e-001
|
|
data8 0x3fe15f85a19c7658 // log(1/frcpa(1+184/256))= +5.42910e-001
|
|
data8 0x3fe16d4d38c119f8 // log(1/frcpa(1+185/256))= +5.44592e-001
|
|
data8 0x3fe18203c20dd130 // log(1/frcpa(1+186/256))= +5.47121e-001
|
|
data8 0x3fe196c7bc4b1f38 // log(1/frcpa(1+187/256))= +5.49656e-001
|
|
data8 0x3fe1a4a738b7a33c // log(1/frcpa(1+188/256))= +5.51349e-001
|
|
data8 0x3fe1b981c0c9653c // log(1/frcpa(1+189/256))= +5.53895e-001
|
|
data8 0x3fe1ce69e8bb1068 // log(1/frcpa(1+190/256))= +5.56447e-001
|
|
data8 0x3fe1dc619de06944 // log(1/frcpa(1+191/256))= +5.58152e-001
|
|
data8 0x3fe1f160a2ad0da0 // log(1/frcpa(1+192/256))= +5.60715e-001
|
|
data8 0x3fe2066d7740737c // log(1/frcpa(1+193/256))= +5.63285e-001
|
|
data8 0x3fe2147dba47a390 // log(1/frcpa(1+194/256))= +5.65001e-001
|
|
data8 0x3fe229a1bc5ebac0 // log(1/frcpa(1+195/256))= +5.67582e-001
|
|
data8 0x3fe237c1841a502c // log(1/frcpa(1+196/256))= +5.69306e-001
|
|
data8 0x3fe24cfce6f80d98 // log(1/frcpa(1+197/256))= +5.71898e-001
|
|
data8 0x3fe25b2c55cd5760 // log(1/frcpa(1+198/256))= +5.73630e-001
|
|
data8 0x3fe2707f4d5f7c40 // log(1/frcpa(1+199/256))= +5.76233e-001
|
|
data8 0x3fe285e0842ca380 // log(1/frcpa(1+200/256))= +5.78842e-001
|
|
data8 0x3fe294294708b770 // log(1/frcpa(1+201/256))= +5.80586e-001
|
|
data8 0x3fe2a9a2670aff0c // log(1/frcpa(1+202/256))= +5.83207e-001
|
|
data8 0x3fe2b7fb2c8d1cc0 // log(1/frcpa(1+203/256))= +5.84959e-001
|
|
data8 0x3fe2c65a6395f5f4 // log(1/frcpa(1+204/256))= +5.86713e-001
|
|
data8 0x3fe2dbf557b0df40 // log(1/frcpa(1+205/256))= +5.89350e-001
|
|
data8 0x3fe2ea64c3f97654 // log(1/frcpa(1+206/256))= +5.91113e-001
|
|
data8 0x3fe3001823684d70 // log(1/frcpa(1+207/256))= +5.93762e-001
|
|
data8 0x3fe30e97e9a8b5cc // log(1/frcpa(1+208/256))= +5.95531e-001
|
|
data8 0x3fe32463ebdd34e8 // log(1/frcpa(1+209/256))= +5.98192e-001
|
|
data8 0x3fe332f4314ad794 // log(1/frcpa(1+210/256))= +5.99970e-001
|
|
data8 0x3fe348d90e7464cc // log(1/frcpa(1+211/256))= +6.02643e-001
|
|
data8 0x3fe35779f8c43d6c // log(1/frcpa(1+212/256))= +6.04428e-001
|
|
data8 0x3fe36621961a6a98 // log(1/frcpa(1+213/256))= +6.06217e-001
|
|
data8 0x3fe37c299f3c3668 // log(1/frcpa(1+214/256))= +6.08907e-001
|
|
data8 0x3fe38ae2171976e4 // log(1/frcpa(1+215/256))= +6.10704e-001
|
|
data8 0x3fe399a157a603e4 // log(1/frcpa(1+216/256))= +6.12504e-001
|
|
data8 0x3fe3afccfe77b9d0 // log(1/frcpa(1+217/256))= +6.15210e-001
|
|
data8 0x3fe3be9d503533b4 // log(1/frcpa(1+218/256))= +6.17018e-001
|
|
data8 0x3fe3cd7480b4a8a0 // log(1/frcpa(1+219/256))= +6.18830e-001
|
|
data8 0x3fe3e3c43918f76c // log(1/frcpa(1+220/256))= +6.21554e-001
|
|
data8 0x3fe3f2acb27ed6c4 // log(1/frcpa(1+221/256))= +6.23373e-001
|
|
data8 0x3fe4019c2125ca90 // log(1/frcpa(1+222/256))= +6.25197e-001
|
|
data8 0x3fe4181061389720 // log(1/frcpa(1+223/256))= +6.27937e-001
|
|
data8 0x3fe42711518df544 // log(1/frcpa(1+224/256))= +6.29769e-001
|
|
data8 0x3fe436194e12b6bc // log(1/frcpa(1+225/256))= +6.31604e-001
|
|
data8 0x3fe445285d68ea68 // log(1/frcpa(1+226/256))= +6.33442e-001
|
|
data8 0x3fe45bcc464c8938 // log(1/frcpa(1+227/256))= +6.36206e-001
|
|
data8 0x3fe46aed21f117fc // log(1/frcpa(1+228/256))= +6.38053e-001
|
|
data8 0x3fe47a1527e8a2d0 // log(1/frcpa(1+229/256))= +6.39903e-001
|
|
data8 0x3fe489445efffcc8 // log(1/frcpa(1+230/256))= +6.41756e-001
|
|
data8 0x3fe4a018bcb69834 // log(1/frcpa(1+231/256))= +6.44543e-001
|
|
data8 0x3fe4af5a0c9d65d4 // log(1/frcpa(1+232/256))= +6.46405e-001
|
|
data8 0x3fe4bea2a5bdbe84 // log(1/frcpa(1+233/256))= +6.48271e-001
|
|
data8 0x3fe4cdf28f10ac44 // log(1/frcpa(1+234/256))= +6.50140e-001
|
|
data8 0x3fe4dd49cf994058 // log(1/frcpa(1+235/256))= +6.52013e-001
|
|
data8 0x3fe4eca86e64a680 // log(1/frcpa(1+236/256))= +6.53889e-001
|
|
data8 0x3fe503c43cd8eb68 // log(1/frcpa(1+237/256))= +6.56710e-001
|
|
data8 0x3fe513356667fc54 // log(1/frcpa(1+238/256))= +6.58595e-001
|
|
data8 0x3fe522ae0738a3d4 // log(1/frcpa(1+239/256))= +6.60483e-001
|
|
data8 0x3fe5322e26867854 // log(1/frcpa(1+240/256))= +6.62376e-001
|
|
data8 0x3fe541b5cb979808 // log(1/frcpa(1+241/256))= +6.64271e-001
|
|
data8 0x3fe55144fdbcbd60 // log(1/frcpa(1+242/256))= +6.66171e-001
|
|
data8 0x3fe560dbc45153c4 // log(1/frcpa(1+243/256))= +6.68074e-001
|
|
data8 0x3fe5707a26bb8c64 // log(1/frcpa(1+244/256))= +6.69980e-001
|
|
data8 0x3fe587f60ed5b8fc // log(1/frcpa(1+245/256))= +6.72847e-001
|
|
data8 0x3fe597a7977c8f30 // log(1/frcpa(1+246/256))= +6.74763e-001
|
|
data8 0x3fe5a760d634bb88 // log(1/frcpa(1+247/256))= +6.76682e-001
|
|
data8 0x3fe5b721d295f10c // log(1/frcpa(1+248/256))= +6.78605e-001
|
|
data8 0x3fe5c6ea94431ef8 // log(1/frcpa(1+249/256))= +6.80532e-001
|
|
data8 0x3fe5d6bb22ea86f4 // log(1/frcpa(1+250/256))= +6.82462e-001
|
|
data8 0x3fe5e6938645d38c // log(1/frcpa(1+251/256))= +6.84397e-001
|
|
data8 0x3fe5f673c61a2ed0 // log(1/frcpa(1+252/256))= +6.86335e-001
|
|
data8 0x3fe6065bea385924 // log(1/frcpa(1+253/256))= +6.88276e-001
|
|
data8 0x3fe6164bfa7cc068 // log(1/frcpa(1+254/256))= +6.90222e-001
|
|
data8 0x3fe62643fecf9740 // log(1/frcpa(1+255/256))= +6.92171e-001
|
|
LOCAL_OBJECT_END(pow_Tt)
|
|
|
|
|
|
// Table 1 is 2^(index_1/128) where
|
|
// index_1 goes from 0 to 15
|
|
LOCAL_OBJECT_START(pow_tbl1)
|
|
data8 0x8000000000000000 , 0x00003FFF
|
|
data8 0x80B1ED4FD999AB6C , 0x00003FFF
|
|
data8 0x8164D1F3BC030773 , 0x00003FFF
|
|
data8 0x8218AF4373FC25EC , 0x00003FFF
|
|
data8 0x82CD8698AC2BA1D7 , 0x00003FFF
|
|
data8 0x8383594EEFB6EE37 , 0x00003FFF
|
|
data8 0x843A28C3ACDE4046 , 0x00003FFF
|
|
data8 0x84F1F656379C1A29 , 0x00003FFF
|
|
data8 0x85AAC367CC487B15 , 0x00003FFF
|
|
data8 0x8664915B923FBA04 , 0x00003FFF
|
|
data8 0x871F61969E8D1010 , 0x00003FFF
|
|
data8 0x87DB357FF698D792 , 0x00003FFF
|
|
data8 0x88980E8092DA8527 , 0x00003FFF
|
|
data8 0x8955EE03618E5FDD , 0x00003FFF
|
|
data8 0x8A14D575496EFD9A , 0x00003FFF
|
|
data8 0x8AD4C6452C728924 , 0x00003FFF
|
|
LOCAL_OBJECT_END(pow_tbl1)
|
|
|
|
|
|
// Table 2 is 2^(index_1/8) where
|
|
// index_2 goes from 0 to 7
|
|
LOCAL_OBJECT_START(pow_tbl2)
|
|
data8 0x8000000000000000 , 0x00003FFF
|
|
data8 0x8B95C1E3EA8BD6E7 , 0x00003FFF
|
|
data8 0x9837F0518DB8A96F , 0x00003FFF
|
|
data8 0xA5FED6A9B15138EA , 0x00003FFF
|
|
data8 0xB504F333F9DE6484 , 0x00003FFF
|
|
data8 0xC5672A115506DADD , 0x00003FFF
|
|
data8 0xD744FCCAD69D6AF4 , 0x00003FFF
|
|
data8 0xEAC0C6E7DD24392F , 0x00003FFF
|
|
LOCAL_OBJECT_END(pow_tbl2)
|
|
|
|
.section .text
|
|
WEAK_LIBM_ENTRY(powf)
|
|
|
|
// Get exponent of x. Will be used to calculate K.
|
|
{ .mfi
|
|
getf.exp pow_GR_signexp_X = f8
|
|
fms.s1 POW_Xm1 = f8,f1,f1 // Will be used for r1 if x>0
|
|
mov pow_GR_17ones = 0x1FFFF
|
|
}
|
|
{ .mfi
|
|
addl pow_AD_P = @ltoff(pow_table_P), gp
|
|
fma.s1 POW_Xp1 = f8,f1,f1 // Will be used for r1 if x<0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Get significand of x. Will be used to get index to fetch T, Tt.
|
|
{ .mfi
|
|
getf.sig pow_GR_sig_X = f8
|
|
frcpa.s1 POW_B, p6 = f1,f8
|
|
mov pow_GR_exp_half = 0xFFFE // Exponent for 0.5
|
|
}
|
|
{ .mfi
|
|
ld8 pow_AD_P = [pow_AD_P]
|
|
fma.s1 POW_NORM_X = f8,f1,f0
|
|
mov pow_GR_exp_2tom8 = 0xFFF7
|
|
}
|
|
;;
|
|
|
|
// DOUBLE 0x10033 exponent limit at which y is an integer
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.lt.s1 p8,p9 = f8, f0 // Test for x<0
|
|
addl pow_GR_10033 = 0x10033, r0
|
|
}
|
|
{ .mfi
|
|
mov pow_GR_16ones = 0xFFFF
|
|
fma.s1 POW_NORM_Y = f9,f1,f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p13 = TRUE ==> X is unorm
|
|
{ .mfi
|
|
setf.exp POW_Q0_half = pow_GR_exp_half // Form 0.5
|
|
fclass.m p13,p0 = f8, 0x0b // Test for x unorm
|
|
adds pow_AD_Tt = pow_Tt - pow_table_P, pow_AD_P
|
|
}
|
|
{ .mfi
|
|
adds pow_AD_Q = pow_table_Q - pow_table_P, pow_AD_P
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p14 = TRUE ==> X is ZERO
|
|
{ .mfi
|
|
ldfe POW_P2 = [pow_AD_Q], 16
|
|
fclass.m p14,p0 = f8, 0x07
|
|
nop.i 999
|
|
}
|
|
// Note POW_Xm1 and POW_r1 are used interchangably
|
|
{ .mfb
|
|
nop.m 999
|
|
(p8) fnma.s1 POW_Xm1 = POW_Xp1,f1,f0
|
|
(p13) br.cond.spnt POW_X_DENORM
|
|
}
|
|
;;
|
|
|
|
// Continue normal and denormal paths here
|
|
POW_COMMON:
|
|
// p11 = TRUE ==> Y is a NAN
|
|
{ .mfi
|
|
and pow_GR_exp_X = pow_GR_signexp_X, pow_GR_17ones
|
|
fclass.m p11,p0 = f9, 0xc3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 POW_r = POW_B, POW_NORM_X,f1
|
|
mov pow_GR_y_zero = 0
|
|
}
|
|
;;
|
|
|
|
// Get exponent of |x|-1 to use in comparison to 2^-8
|
|
{ .mmi
|
|
getf.exp pow_GR_signexp_Xm1 = POW_Xm1
|
|
sub pow_GR_true_exp_X = pow_GR_exp_X, pow_GR_16ones
|
|
extr.u pow_GR_offset = pow_GR_sig_X, 55, 8
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
alloc r32=ar.pfs,2,19,4,0
|
|
fcvt.fx.s1 POW_int_Y = POW_NORM_Y
|
|
shladd pow_AD_Tt = pow_GR_offset, 3, pow_AD_Tt
|
|
}
|
|
{ .mfi
|
|
setf.sig POW_int_K = pow_GR_true_exp_X
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p12 = TRUE if Y is ZERO
|
|
// Compute xsq to decide later if |x|=1
|
|
{ .mfi
|
|
ldfe POW_P1 = [pow_AD_P], 16
|
|
fclass.m p12,p0 = f9, 0x07
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
ldfe POW_P0 = [pow_AD_Q], 16
|
|
fma.s1 POW_xsq = POW_NORM_X, POW_NORM_X, f0
|
|
(p11) br.cond.spnt POW_Y_NAN // Branch if y=nan
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
getf.exp pow_GR_signexp_Y = POW_NORM_Y
|
|
ldfd POW_T = [pow_AD_Tt]
|
|
fma.s1 POW_rsq = POW_r, POW_r,f0
|
|
}
|
|
;;
|
|
|
|
// p11 = TRUE ==> X is a NAN
|
|
{ .mfi
|
|
ldfpd POW_log2_hi, POW_log2_lo = [pow_AD_Q], 16
|
|
fclass.m p11,p0 = POW_NORM_X, 0xc3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
ldfe POW_inv_log2_by_128 = [pow_AD_P], 16
|
|
fma.s1 POW_delta = f0,f0,f0 // delta=0 in case |x| near 1
|
|
(p12) mov pow_GR_y_zero = 1
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfd POW_Q2 = [pow_AD_P], 16
|
|
fnma.s1 POW_twoV = POW_r, POW_Q0_half,f1
|
|
and pow_GR_exp_Xm1 = pow_GR_signexp_Xm1, pow_GR_17ones
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_U = POW_NORM_Y,POW_r,f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Determine if we will use the |x| near 1 path (p6) or normal path (p7)
|
|
{ .mfi
|
|
nop.m 999
|
|
fcvt.xf POW_K = POW_int_K
|
|
cmp.lt p6,p7 = pow_GR_exp_Xm1, pow_GR_exp_2tom8
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 POW_G = f0,f0,f0 // G=0 in case |x| near 1
|
|
(p11) br.cond.spnt POW_X_NAN // Branch if x=nan and y not nan
|
|
}
|
|
;;
|
|
|
|
// If on the x near 1 path, assign r1 to r
|
|
{ .mfi
|
|
ldfpd POW_Q1, POW_RSHF = [pow_AD_P], 16
|
|
(p6) fma.s1 POW_r = POW_r1, f1, f0
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fma.s1 POW_rsq = POW_r1, POW_r1, f0
|
|
(p14) br.cond.spnt POW_X_0 // Branch if x zero and y not nan
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.sig pow_GR_sig_int_Y = POW_int_Y
|
|
(p6) fnma.s1 POW_twoV = POW_r1, POW_Q0_half,f1
|
|
and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
|
|
}
|
|
{ .mfb
|
|
andcm pow_GR_sign_Y = pow_GR_signexp_Y, pow_GR_17ones
|
|
(p6) fma.s1 POW_U = POW_NORM_Y,POW_r1,f0
|
|
(p12) br.cond.spnt POW_Y_0 // Branch if y=zero, x not zero or nan
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe POW_log2_by_128_lo = [pow_AD_P], 16
|
|
(p7) fma.s1 POW_Z2 = POW_twoV, POW_U, f0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
ldfe POW_log2_by_128_hi = [pow_AD_Q], 16
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcvt.xf POW_float_int_Y = POW_int_Y
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 POW_G = POW_K, POW_log2_hi, POW_T
|
|
adds pow_AD_tbl1 = pow_tbl1 - pow_Tt, pow_AD_Q
|
|
}
|
|
;;
|
|
|
|
// p11 = TRUE ==> X is NEGATIVE but not inf
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p11,p0 = POW_NORM_X, 0x1a
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 POW_delta = POW_K, POW_log2_lo, f0
|
|
adds pow_AD_tbl2 = pow_tbl2 - pow_tbl1, pow_AD_tbl1
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 POW_Z = POW_twoV, POW_U, f0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_v2 = POW_P1, POW_r, POW_P0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p11 = TRUE ==> X is NEGATIVE but not inf
|
|
// p12 = TRUE ==> X is NEGATIVE AND Y already even int
|
|
// p13 = TRUE ==> X is NEGATIVE AND Y possible int
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 POW_Z = POW_NORM_Y, POW_G, POW_Z2
|
|
(p11) cmp.gt.unc p12,p13 = pow_GR_exp_Y, pow_GR_10033
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_Gpr = POW_G, f1, POW_r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_Yrcub = POW_rsq, POW_U, f0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_p = POW_rsq, POW_P2, POW_v2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Test if x inf
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p15,p0 = POW_NORM_X, 0x23
|
|
nop.i 999
|
|
}
|
|
// By adding RSHF (1.1000...*2^63) we put integer part in rightmost significand
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_W1 = POW_Z, POW_inv_log2_by_128, POW_RSHF
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p13 = TRUE ==> X is NEGATIVE AND Y possible int
|
|
// p10 = TRUE ==> X is NEG and Y is an int
|
|
// p12 = TRUE ==> X is NEG and Y is not an int
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fcmp.eq.unc.s1 p10,p12 = POW_float_int_Y, POW_NORM_Y
|
|
mov pow_GR_xneg_yodd = 0
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_Y_Gpr = POW_NORM_Y, POW_Gpr, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p11 = TRUE ==> X is +1.0
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s1 p11,p0 = POW_NORM_X, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Extract rounded integer from rightmost significand of POW_W1
|
|
// By subtracting RSHF we get rounded integer POW_Nfloat
|
|
{ .mfi
|
|
getf.sig pow_GR_int_N = POW_W1
|
|
fms.s1 POW_Nfloat = POW_W1, f1, POW_RSHF
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 POW_Z3 = POW_p, POW_Yrcub, f0
|
|
(p12) br.cond.spnt POW_X_NEG_Y_NONINT // Branch if x neg, y not integer
|
|
}
|
|
;;
|
|
|
|
// p7 = TRUE ==> Y is +1.0
|
|
// p12 = TRUE ==> X is NEGATIVE AND Y is an odd integer
|
|
{ .mfi
|
|
getf.exp pow_GR_signexp_Y_Gpr = POW_Y_Gpr
|
|
fcmp.eq.s1 p7,p0 = POW_NORM_Y, f1 // Test for y=1.0
|
|
(p10) tbit.nz.unc p12,p0 = pow_GR_sig_int_Y,0
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p11) fma.s.s0 f8 = f1,f1,f0 // If x=1, result is +1
|
|
(p15) br.cond.spnt POW_X_INF
|
|
}
|
|
;;
|
|
|
|
// Test x and y and flag denormal
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s0 p15,p0 = f8,f9
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 POW_e3 = POW_NORM_Y, POW_delta, f0
|
|
(p11) br.ret.spnt b0 // Early exit if x=1.0, result is +1
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p12) mov pow_GR_xneg_yodd = 1
|
|
fnma.s1 POW_f12 = POW_Nfloat, POW_log2_by_128_lo, f1
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fnma.s1 POW_s = POW_Nfloat, POW_log2_by_128_hi, POW_Z
|
|
(p7) br.ret.spnt b0 // Early exit if y=1.0, result is x
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
and pow_GR_index1 = 0x0f, pow_GR_int_N
|
|
and pow_GR_index2 = 0x70, pow_GR_int_N
|
|
shr pow_int_GR_M = pow_GR_int_N, 7 // M = N/128
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
shladd pow_AD_T1 = pow_GR_index1, 4, pow_AD_tbl1
|
|
fma.s1 POW_q = POW_Z3, POW_Q1, POW_Q0_half
|
|
add pow_int_GR_M = pow_GR_16ones, pow_int_GR_M
|
|
}
|
|
{ .mfi
|
|
add pow_AD_T2 = pow_AD_tbl2, pow_GR_index2
|
|
fma.s1 POW_Z3sq = POW_Z3, POW_Z3, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe POW_T1 = [pow_AD_T1]
|
|
ldfe POW_T2 = [pow_AD_T2]
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// f123 = f12*(e3+1) = f12*e3+f12
|
|
{ .mfi
|
|
setf.exp POW_2M = pow_int_GR_M
|
|
fma.s1 POW_f123 = POW_e3,POW_f12,POW_f12
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_ssq = POW_s, POW_s, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_v2 = POW_s, POW_Q2, POW_Q1
|
|
and pow_GR_exp_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
cmp.ne p12,p13 = pow_GR_xneg_yodd, r0
|
|
fma.s1 POW_q = POW_Z3sq, POW_q, POW_Z3
|
|
sub pow_GR_true_exp_Y_Gpr = pow_GR_exp_Y_Gpr, pow_GR_16ones
|
|
}
|
|
;;
|
|
|
|
// p8 TRUE ==> |Y(G + r)| >= 7
|
|
|
|
// single
|
|
// -2^7 -2^6 2^6 2^7
|
|
// -----+-----+----+ ... +-----+-----+-----
|
|
// p8 | p9 | p8
|
|
// | | p10 | |
|
|
|
|
// Form signexp of constants to indicate overflow
|
|
{ .mfi
|
|
mov pow_GR_big_pos = 0x1007f
|
|
nop.f 999
|
|
cmp.le p8,p9 = 7, pow_GR_true_exp_Y_Gpr
|
|
}
|
|
{ .mfi
|
|
mov pow_GR_big_neg = 0x3007f
|
|
nop.f 999
|
|
andcm pow_GR_sign_Y_Gpr = pow_GR_signexp_Y_Gpr, pow_GR_17ones
|
|
}
|
|
;;
|
|
|
|
// Form big positive and negative constants to test for possible overflow
|
|
// Scale both terms of the polynomial by POW_f123
|
|
{ .mfi
|
|
setf.exp POW_big_pos = pow_GR_big_pos
|
|
fma.s1 POW_ssq = POW_ssq, POW_f123, f0
|
|
(p9) cmp.le.unc p0,p10 = 6, pow_GR_true_exp_Y_Gpr
|
|
}
|
|
{ .mfb
|
|
setf.exp POW_big_neg = pow_GR_big_neg
|
|
fma.s1 POW_1ps = POW_s, POW_f123, POW_f123
|
|
(p8) br.cond.spnt POW_OVER_UNDER_X_NOT_INF
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s1 POW_T1T2 = POW_T1, POW_T2, f0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fma.s1 POW_T1T2 = POW_T1, POW_T2, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_v210 = POW_s, POW_v2, POW_Q0_half
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_2Mqp1 = POW_2M, POW_q, POW_2M
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_es = POW_ssq, POW_v210, POW_1ps
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 POW_A = POW_T1T2, POW_2Mqp1, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Dummy op to set inexact
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s0 POW_tmp = POW_2M, POW_q, POW_2M
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s.s0 f8 = POW_A, POW_es, f0
|
|
(p10) br.ret.sptk b0 // Exit main branch if no over/underflow
|
|
}
|
|
;;
|
|
|
|
// POSSIBLE_OVER_UNDER
|
|
// p6 = TRUE ==> Y_Gpr negative
|
|
// Result is already computed. We just need to know if over/underflow occurred.
|
|
|
|
{ .mfb
|
|
cmp.eq p0,p6 = pow_GR_sign_Y_Gpr, r0
|
|
nop.f 999
|
|
(p6) br.cond.spnt POW_POSSIBLE_UNDER
|
|
}
|
|
;;
|
|
|
|
// POSSIBLE_OVER
|
|
// We got an answer.
|
|
// overflow is a possibility, not a certainty
|
|
|
|
|
|
// We define an overflow when the answer with
|
|
// WRE set
|
|
// user-defined rounding mode
|
|
|
|
// double
|
|
// Largest double is 7FE (biased double)
|
|
// 7FE - 3FF + FFFF = 103FE
|
|
// Create + largest_double_plus_ulp
|
|
// Create - largest_double_plus_ulp
|
|
// Calculate answer with WRE set.
|
|
|
|
// single
|
|
// Largest single is FE (biased double)
|
|
// FE - 7F + FFFF = 1007E
|
|
// Create + largest_single_plus_ulp
|
|
// Create - largest_single_plus_ulp
|
|
// Calculate answer with WRE set.
|
|
|
|
// Cases when answer is ldn+1 are as follows:
|
|
// ldn ldn+1
|
|
// --+----------|----------+------------
|
|
// |
|
|
// +inf +inf -inf
|
|
// RN RN
|
|
// RZ
|
|
|
|
// Put in s2 (td set, wre set)
|
|
{ .mfi
|
|
nop.m 999
|
|
fsetc.s2 0x7F,0x42
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s.s2 POW_wre_urm_f8 = POW_A, POW_es, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Return s2 to default
|
|
{ .mfi
|
|
nop.m 999
|
|
fsetc.s2 0x7F,0x40
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p7 = TRUE ==> yes, we have an overflow
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.ge.s1 p7, p8 = POW_wre_urm_f8, POW_big_pos
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fcmp.le.s1 p7, p0 = POW_wre_urm_f8, POW_big_neg
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mbb
|
|
(p7) mov pow_GR_tag = 30
|
|
(p7) br.cond.spnt __libm_error_region // Branch if overflow
|
|
br.ret.sptk b0 // Exit if did not overflow
|
|
}
|
|
;;
|
|
|
|
|
|
POW_POSSIBLE_UNDER:
|
|
// We got an answer. input was < -2^9 but > -2^10 (double)
|
|
// We got an answer. input was < -2^6 but > -2^7 (float)
|
|
// underflow is a possibility, not a certainty
|
|
|
|
// We define an underflow when the answer with
|
|
// ftz set
|
|
// is zero (tiny numbers become zero)
|
|
// Notice (from below) that if we have an unlimited exponent range,
|
|
// then there is an extra machine number E between the largest denormal and
|
|
// the smallest normal.
|
|
// So if with unbounded exponent we round to E or below, then we are
|
|
// tiny and underflow has occurred.
|
|
// But notice that you can be in a situation where we are tiny, namely
|
|
// rounded to E, but when the exponent is bounded we round to smallest
|
|
// normal. So the answer can be the smallest normal with underflow.
|
|
// E
|
|
// -----+--------------------+--------------------+-----
|
|
// | | |
|
|
// 1.1...10 2^-3fff 1.1...11 2^-3fff 1.0...00 2^-3ffe
|
|
// 0.1...11 2^-3ffe (biased, 1)
|
|
// largest dn smallest normal
|
|
|
|
// Form small constant (2^-170) to correct underflow result near region of
|
|
// smallest denormal in round-nearest.
|
|
|
|
// Put in s2 (td set, ftz set)
|
|
.pred.rel "mutex",p12,p13
|
|
{ .mfi
|
|
mov pow_GR_Fpsr = ar40 // Read the fpsr--need to check rc.s0
|
|
fsetc.s2 0x7F,0x41
|
|
mov pow_GR_rcs0_mask = 0x0c00 // Set mask for rc.s0
|
|
}
|
|
{ .mfi
|
|
(p12) mov pow_GR_tmp = 0x2ffff - 170
|
|
nop.f 999
|
|
(p13) mov pow_GR_tmp = 0x0ffff - 170
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp POW_eps = pow_GR_tmp // Form 2^-170
|
|
fma.s.s2 POW_ftz_urm_f8 = POW_A, POW_es, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Return s2 to default
|
|
{ .mfi
|
|
nop.m 999
|
|
fsetc.s2 0x7F,0x40
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p7 = TRUE ==> yes, we have an underflow
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s1 p7, p0 = POW_ftz_urm_f8, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p7) and pow_GR_rcs0 = pow_GR_rcs0_mask, pow_GR_Fpsr // Isolate rc.s0
|
|
;;
|
|
(p7) cmp.eq.unc p6,p0 = pow_GR_rcs0, r0 // Test for round to nearest
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Tweak result slightly if underflow to get correct rounding near smallest
|
|
// denormal if round-nearest
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fms.s.s0 f8 = POW_A, POW_es, POW_eps
|
|
nop.i 999
|
|
}
|
|
{ .mbb
|
|
(p7) mov pow_GR_tag = 31
|
|
(p7) br.cond.spnt __libm_error_region // Branch if underflow
|
|
br.ret.sptk b0 // Exit if did not underflow
|
|
}
|
|
;;
|
|
|
|
POW_X_DENORM:
|
|
// Here if x unorm. Use the NORM_X for getf instructions, and then back
|
|
// to normal path
|
|
{ .mfi
|
|
getf.exp pow_GR_signexp_X = POW_NORM_X
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mib
|
|
getf.sig pow_GR_sig_X = POW_NORM_X
|
|
nop.i 999
|
|
br.cond.sptk POW_COMMON
|
|
}
|
|
;;
|
|
|
|
POW_X_0:
|
|
// Here if x=0 and y not nan
|
|
//
|
|
// We have the following cases:
|
|
// p6 x=0 and y>0 and is an integer (may be even or odd)
|
|
// p7 x=0 and y>0 and is NOT an integer, return +0
|
|
// p8 x=0 and y>0 and so big as to always be an even integer, return +0
|
|
// p9 x=0 and y>0 and may not be integer
|
|
// p10 x=0 and y>0 and is an odd integer, return x
|
|
// p11 x=0 and y>0 and is an even integer, return +0
|
|
// p12 used in dummy fcmp to set denormal flag if y=unorm
|
|
// p13 x=0 and y>0
|
|
// p14 x=0 and y=0, branch to code for calling error handling
|
|
// p15 x=0 and y<0, branch to code for calling error handling
|
|
//
|
|
{ .mfi
|
|
getf.sig pow_GR_sig_int_Y = POW_int_Y // Get signif of int_Y
|
|
fcmp.lt.s1 p15,p13 = f9, f0 // Test for y<0
|
|
and pow_GR_exp_Y = pow_GR_signexp_Y, pow_GR_17ones
|
|
}
|
|
{ .mfb
|
|
cmp.ne p14,p0 = pow_GR_y_zero,r0 // Test for y=0
|
|
fcvt.xf POW_float_int_Y = POW_int_Y
|
|
(p14) br.cond.spnt POW_X_0_Y_0 // Branch if x=0 and y=0
|
|
}
|
|
;;
|
|
|
|
// If x=0 and y>0, test y and flag denormal
|
|
{ .mfb
|
|
(p13) cmp.gt.unc p8,p9 = pow_GR_exp_Y, pow_GR_10033 // Test y +big = even int
|
|
(p13) fcmp.eq.s0 p12,p0 = f9,f0 // If x=0, y>0 dummy op to flag denormal
|
|
(p15) br.cond.spnt POW_X_0_Y_NEG // Branch if x=0 and y<0
|
|
}
|
|
;;
|
|
|
|
// Here if x=0 and y>0
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fcmp.eq.unc.s1 p6,p7 = POW_float_int_Y, POW_NORM_Y // Test y=int
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.s.s0 f8 = f0,f0,f0 // If x=0, y>0 and large even int, return +0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y>0 and not integer
|
|
(p6) tbit.nz.unc p10,p11 = pow_GR_sig_int_Y,0 // If y>0 int, test y even/odd
|
|
}
|
|
;;
|
|
|
|
// Note if x=0, y>0 and odd integer, just return x
|
|
{ .mfb
|
|
nop.m 999
|
|
(p11) fma.s.s0 f8 = f0,f0,f0 // Result +0 if x=0 and y even integer
|
|
br.ret.sptk b0 // Exit if x=0 and y>0
|
|
}
|
|
;;
|
|
|
|
POW_X_0_Y_0:
|
|
// When X is +-0 and Y is +-0, IEEE returns 1.0
|
|
// We call error support with this value
|
|
|
|
{ .mfb
|
|
mov pow_GR_tag = 32
|
|
fma.s.s0 f8 = f1,f1,f0
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
POW_X_0_Y_NEG:
|
|
// When X is +-0 and Y is negative, IEEE returns
|
|
// X Y answer
|
|
// +0 -odd int +inf
|
|
// -0 -odd int -inf
|
|
|
|
// +0 !-odd int +inf
|
|
// -0 !-odd int +inf
|
|
|
|
// p6 == Y is a floating point number outside the integer.
|
|
// Hence it is an integer and is even.
|
|
// return +inf
|
|
|
|
// p7 == Y is a floating point number within the integer range.
|
|
// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
|
|
// p11 odd
|
|
// return (sign_of_x)inf
|
|
// p12 even
|
|
// return +inf
|
|
// p10 == Y is not an integer
|
|
// return +inf
|
|
//
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
nop.f 999
|
|
cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
mov pow_GR_tag = 33
|
|
(p7) fcmp.eq.unc.s1 p9,p10 = POW_float_int_Y, POW_NORM_Y
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) frcpa.s0 f8,p13 = f1, f0
|
|
(p6) br.cond.sptk __libm_error_region // x=0, y<0, y large neg int
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p10) frcpa.s0 f8,p13 = f1, f0
|
|
(p10) br.cond.sptk __libm_error_region // x=0, y<0, y not int
|
|
}
|
|
;;
|
|
|
|
// x=0, y<0, y an int
|
|
{ .mib
|
|
nop.m 999
|
|
(p9) tbit.nz.unc p11,p12 = pow_GR_sig_int_Y,0
|
|
nop.b 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) frcpa.s0 f8,p13 = f1,f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p11) frcpa.s0 f8,p13 = f1,f8
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
|
|
POW_Y_0:
|
|
// Here for y zero, x anything but zero and nan
|
|
// Set flag if x denormal
|
|
// Result is +1.0
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s0 p6,p0 = f8,f0 // Sets flag if x denormal
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s.s0 f8 = f1,f1,f0
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
|
|
POW_X_INF:
|
|
// Here when X is +-inf
|
|
|
|
// X +inf Y +inf +inf
|
|
// X -inf Y +inf +inf
|
|
|
|
// X +inf Y >0 +inf
|
|
// X -inf Y >0, !odd integer +inf <== (-inf)^0.5 = +inf !!
|
|
// X -inf Y >0, odd integer -inf
|
|
|
|
// X +inf Y -inf +0
|
|
// X -inf Y -inf +0
|
|
|
|
// X +inf Y <0 +0
|
|
// X -inf Y <0, !odd integer +0
|
|
// X -inf Y <0, odd integer -0
|
|
|
|
// X + inf Y=+0 +1
|
|
// X + inf Y=-0 +1
|
|
// X - inf Y=+0 +1
|
|
// X - inf Y=-0 +1
|
|
|
|
// p13 == Y negative
|
|
// p14 == Y positive
|
|
|
|
// p6 == Y is a floating point number outside the integer.
|
|
// Hence it is an integer and is even.
|
|
// p13 == (Y negative)
|
|
// return +inf
|
|
// p14 == (Y positive)
|
|
// return +0
|
|
|
|
// p7 == Y is a floating point number within the integer range.
|
|
// p9 == (int_Y = NORM_Y), Y is an integer, which may be odd or even.
|
|
// p11 odd
|
|
// p13 == (Y negative)
|
|
// return (sign_of_x)inf
|
|
// p14 == (Y positive)
|
|
// return (sign_of_x)0
|
|
// pxx even
|
|
// p13 == (Y negative)
|
|
// return +inf
|
|
// p14 == (Y positive)
|
|
// return +0
|
|
|
|
// pxx == Y is not an integer
|
|
// p13 == (Y negative)
|
|
// return +inf
|
|
// p14 == (Y positive)
|
|
// return +0
|
|
//
|
|
|
|
// If x=inf, test y and flag denormal
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s0 p10,p11 = f9,f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.lt.s0 p13,p14 = POW_NORM_Y,f0
|
|
cmp.gt p6,p7 = pow_GR_exp_Y, pow_GR_10033
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p12,p0 = f9, 0x23 //@inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p15,p0 = f9, 0x07 //@zero
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fmerge.s f8 = f1,f1 // Return +1.0 if x=inf, y=0
|
|
(p15) br.ret.spnt b0 // Exit if x=inf, y=0
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) frcpa.s1 f8,p10 = f1,f0 // If x=inf, y>0, assume result +inf
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p13) fma.s.s0 f8 = f0,f0,f0 // If x=inf, y<0, assume result +0.0
|
|
(p12) br.ret.spnt b0 // Exit if x=inf, y=inf
|
|
}
|
|
;;
|
|
|
|
// Here if x=inf, and 0 < |y| < inf. Need to correct results if y odd integer.
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fcmp.eq.unc.s1 p9,p0 = POW_float_int_Y, POW_NORM_Y // Is y integer?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
nop.f 999
|
|
(p9) tbit.nz.unc p11,p0 = pow_GR_sig_int_Y,0 // Test for y odd integer
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p11) fmerge.s f8 = POW_NORM_X,f8 // If y odd integer use sign of x
|
|
br.ret.sptk b0 // Exit for x=inf, 0 < |y| < inf
|
|
}
|
|
;;
|
|
|
|
|
|
POW_X_NEG_Y_NONINT:
|
|
// When X is negative and Y is a non-integer, IEEE
|
|
// returns a qnan indefinite.
|
|
// We call error support with this value
|
|
|
|
{ .mfb
|
|
mov pow_GR_tag = 34
|
|
frcpa.s0 f8,p6 = f0,f0
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
POW_X_NAN:
|
|
// Here if x=nan, y not nan
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p9,p13 = f9, 0x07 // Test y=zero
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p13) fma.s.s0 f8 = f8,f1,f0
|
|
(p13) br.ret.sptk b0 // Exit if x nan, y anything but zero or nan
|
|
}
|
|
;;
|
|
|
|
POW_X_NAN_Y_0:
|
|
// When X is a NAN and Y is zero, IEEE returns 1.
|
|
// We call error support with this value.
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s0 p6,p0 = f8,f0 // Dummy op to set invalid on snan
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
mov pow_GR_tag = 35
|
|
fma.s.s0 f8 = f0,f0,f1
|
|
br.cond.sptk __libm_error_region
|
|
}
|
|
;;
|
|
|
|
|
|
POW_OVER_UNDER_X_NOT_INF:
|
|
|
|
// p8 is TRUE for overflow
|
|
// p9 is TRUE for underflow
|
|
|
|
// if y is infinity, we should not over/underflow
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s1 p14, p13 = POW_xsq,f1 // Test |x|=1
|
|
cmp.eq p8,p9 = pow_GR_sign_Y_Gpr, r0
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) fclass.m.unc p15, p0 = f9, 0x23 // If |x|=1, test y=inf
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fclass.m.unc p11,p0 = f9, 0x23 // If |x| not 1, test y=inf
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p15 = TRUE if |x|=1, y=inf, return +1
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fma.s.s0 f8 = f1,f1,f0 // If |x|=1, y=inf, result +1
|
|
(p15) br.ret.spnt b0 // Exit if |x|=1, y=inf
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p8,p9
|
|
{ .mfb
|
|
(p8) setf.exp f8 = pow_GR_17ones // If exp(+big), result inf
|
|
(p9) fmerge.s f8 = f0,f0 // If exp(-big), result 0
|
|
(p11) br.ret.sptk b0 // Exit if |x| not 1, y=inf
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
nop.f 999
|
|
br.cond.sptk POW_OVER_UNDER_ERROR // Branch if y not inf
|
|
}
|
|
;;
|
|
|
|
|
|
POW_Y_NAN:
|
|
// Here if y=nan, x anything
|
|
// If x = +1 then result is +1, else result is quiet Y
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.eq.s1 p10,p9 = POW_NORM_X, f1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fcmp.eq.s0 p6,p0 = f9,f1 // Set invalid, even if x=+1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fma.s.s0 f8 = f1,f1,f0
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p9) fma.s.s0 f8 = f9,f8,f0
|
|
br.ret.sptk b0 // Exit y=nan
|
|
}
|
|
;;
|
|
|
|
|
|
POW_OVER_UNDER_ERROR:
|
|
// Here if we have overflow or underflow.
|
|
// Enter with p12 true if x negative and y odd int to force -0 or -inf
|
|
|
|
{ .mfi
|
|
sub pow_GR_17ones_m1 = pow_GR_17ones, r0, 1
|
|
nop.f 999
|
|
mov pow_GR_one = 0x1
|
|
}
|
|
;;
|
|
|
|
// overflow, force inf with O flag
|
|
{ .mmb
|
|
(p8) mov pow_GR_tag = 30
|
|
(p8) setf.exp POW_tmp = pow_GR_17ones_m1
|
|
nop.b 999
|
|
}
|
|
;;
|
|
|
|
// underflow, force zero with I, U flags
|
|
{ .mmi
|
|
(p9) mov pow_GR_tag = 31
|
|
(p9) setf.exp POW_tmp = pow_GR_one
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s.s0 f8 = POW_tmp, POW_tmp, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// p12 x is negative and y is an odd integer, change sign of result
|
|
{ .mfi
|
|
nop.m 999
|
|
(p12) fnma.s.s0 f8 = POW_tmp, POW_tmp, f0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
WEAK_LIBM_END(powf)
|
|
libm_alias_float_other (__pow, pow)
|
|
#ifdef SHARED
|
|
.symver powf,powf@@GLIBC_2.27
|
|
.weak __powf_compat
|
|
.set __powf_compat,__powf
|
|
.symver __powf_compat,powf@GLIBC_2.2
|
|
#endif
|
|
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
|
|
{ .mmi
|
|
stfs [GR_Parameter_Y] = POW_NORM_Y,16 // STORE Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
|
|
.body
|
|
{ .mib
|
|
stfs [GR_Parameter_X] = POW_NORM_X // STORE Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y // Parameter 3 address
|
|
nop.b 0
|
|
}
|
|
{ .mib
|
|
stfs [GR_Parameter_Y] = f8 // STORE Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
|
|
{ .mmi
|
|
add GR_Parameter_RESULT = 48,sp
|
|
nop.m 0
|
|
nop.i 0
|
|
};;
|
|
|
|
{ .mmi
|
|
ldfs f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_error_region)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|