mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 23:10:06 +00:00
599cf39766
The second patch improves performance of sinf and cosf using the same algorithms and polynomials. The returned values are identical to sincosf for the same input. ULP definitions for AArch64 and x64 are updated. sinf/cosf througput gains on Cortex-A72: * |x| < 0x1p-12 : 1.2x * |x| < M_PI_4 : 1.8x * |x| < 2 * M_PI: 1.7x * |x| < 120.0 : 2.3x * |x| < Inf : 3.0x * NEWS: Mention sinf, cosf, sincosf. * sysdeps/aarch64/libm-test-ulps: Update ULP for sinf, cosf, sincosf. * sysdeps/x86_64/fpu/libm-test-ulps: Update ULP for sinf and cosf. * sysdeps/x86_64/fpu/multiarch/s_sincosf-fma.c: Add definitions of constants rather than including generic sincosf.h. * sysdeps/x86_64/fpu/s_sincosf_data.c: Remove. * sysdeps/ieee754/flt-32/s_cosf.c (cosf): Rewrite. * sysdeps/ieee754/flt-32/s_sincosf.h (reduced_sin): Remove. (reduced_cos): Remove. (sinf_poly): New function. * sysdeps/ieee754/flt-32/s_sinf.c (sinf): Rewrite.
165 lines
4.9 KiB
C
165 lines
4.9 KiB
C
/* Used by sinf, cosf and sincosf functions.
|
|
Copyright (C) 2018 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <stdint.h>
|
|
#include <math.h>
|
|
#include "math_config.h"
|
|
|
|
/* 2PI * 2^-64. */
|
|
static const double pi63 = 0x1.921FB54442D18p-62;
|
|
/* PI / 4. */
|
|
static const double pio4 = 0x1.921FB54442D18p-1;
|
|
|
|
/* The constants and polynomials for sine and cosine. */
|
|
typedef struct
|
|
{
|
|
double sign[4]; /* Sign of sine in quadrants 0..3. */
|
|
double hpi_inv; /* 2 / PI ( * 2^24 if !TOINT_INTRINSICS). */
|
|
double hpi; /* PI / 2. */
|
|
double c0, c1, c2, c3, c4; /* Cosine polynomial. */
|
|
double s1, s2, s3; /* Sine polynomial. */
|
|
} sincos_t;
|
|
|
|
/* Polynomial data (the cosine polynomial is negated in the 2nd entry). */
|
|
extern const sincos_t __sincosf_table[2] attribute_hidden;
|
|
|
|
/* Table with 4/PI to 192 bit precision. */
|
|
extern const uint32_t __inv_pio4[] attribute_hidden;
|
|
|
|
/* Top 12 bits of the float representation with the sign bit cleared. */
|
|
static inline uint32_t
|
|
abstop12 (float x)
|
|
{
|
|
return (asuint (x) >> 20) & 0x7ff;
|
|
}
|
|
|
|
/* Compute the sine and cosine of inputs X and X2 (X squared), using the
|
|
polynomial P and store the results in SINP and COSP. N is the quadrant,
|
|
if odd the cosine and sine polynomials are swapped. */
|
|
static inline void
|
|
sincosf_poly (double x, double x2, const sincos_t *p, int n, float *sinp,
|
|
float *cosp)
|
|
{
|
|
double x3, x4, x5, x6, s, c, c1, c2, s1;
|
|
|
|
x4 = x2 * x2;
|
|
x3 = x2 * x;
|
|
c2 = p->c3 + x2 * p->c4;
|
|
s1 = p->s2 + x2 * p->s3;
|
|
|
|
/* Swap sin/cos result based on quadrant. */
|
|
float *tmp = (n & 1 ? cosp : sinp);
|
|
cosp = (n & 1 ? sinp : cosp);
|
|
sinp = tmp;
|
|
|
|
c1 = p->c0 + x2 * p->c1;
|
|
x5 = x3 * x2;
|
|
x6 = x4 * x2;
|
|
|
|
s = x + x3 * p->s1;
|
|
c = c1 + x4 * p->c2;
|
|
|
|
*sinp = s + x5 * s1;
|
|
*cosp = c + x6 * c2;
|
|
}
|
|
|
|
/* Return the sine of inputs X and X2 (X squared) using the polynomial P.
|
|
N is the quadrant, and if odd the cosine polynomial is used. */
|
|
static inline float
|
|
sinf_poly (double x, double x2, const sincos_t *p, int n)
|
|
{
|
|
double x3, x4, x6, x7, s, c, c1, c2, s1;
|
|
|
|
if ((n & 1) == 0)
|
|
{
|
|
x3 = x * x2;
|
|
s1 = p->s2 + x2 * p->s3;
|
|
|
|
x7 = x3 * x2;
|
|
s = x + x3 * p->s1;
|
|
|
|
return s + x7 * s1;
|
|
}
|
|
else
|
|
{
|
|
x4 = x2 * x2;
|
|
c2 = p->c3 + x2 * p->c4;
|
|
c1 = p->c0 + x2 * p->c1;
|
|
|
|
x6 = x4 * x2;
|
|
c = c1 + x4 * p->c2;
|
|
|
|
return c + x6 * c2;
|
|
}
|
|
}
|
|
|
|
/* Fast range reduction using single multiply-subtract. Return the modulo of
|
|
X as a value between -PI/4 and PI/4 and store the quadrant in NP.
|
|
The values for PI/2 and 2/PI are accessed via P. Since PI/2 as a double
|
|
is accurate to 55 bits and the worst-case cancellation happens at 6 * PI/4,
|
|
the result is accurate for |X| <= 120.0. */
|
|
static inline double
|
|
reduce_fast (double x, const sincos_t *p, int *np)
|
|
{
|
|
double r;
|
|
#if TOINT_INTRINSICS
|
|
/* Use fast round and lround instructions when available. */
|
|
r = x * p->hpi_inv;
|
|
*np = converttoint (r);
|
|
return x - roundtoint (r) * p->hpi;
|
|
#else
|
|
/* Use scaled float to int conversion with explicit rounding.
|
|
hpi_inv is prescaled by 2^24 so the quadrant ends up in bits 24..31.
|
|
This avoids inaccuracies introduced by truncating negative values. */
|
|
r = x * p->hpi_inv;
|
|
int n = ((int32_t)r + 0x800000) >> 24;
|
|
*np = n;
|
|
return x - n * p->hpi;
|
|
#endif
|
|
}
|
|
|
|
/* Reduce the range of XI to a multiple of PI/2 using fast integer arithmetic.
|
|
XI is a reinterpreted float and must be >= 2.0f (the sign bit is ignored).
|
|
Return the modulo between -PI/4 and PI/4 and store the quadrant in NP.
|
|
Reduction uses a table of 4/PI with 192 bits of precision. A 32x96->128 bit
|
|
multiply computes the exact 2.62-bit fixed-point modulo. Since the result
|
|
can have at most 29 leading zeros after the binary point, the double
|
|
precision result is accurate to 33 bits. */
|
|
static inline double
|
|
reduce_large (uint32_t xi, int *np)
|
|
{
|
|
const uint32_t *arr = &__inv_pio4[(xi >> 26) & 15];
|
|
int shift = (xi >> 23) & 7;
|
|
uint64_t n, res0, res1, res2;
|
|
|
|
xi = (xi & 0xffffff) | 0x800000;
|
|
xi <<= shift;
|
|
|
|
res0 = xi * arr[0];
|
|
res1 = (uint64_t)xi * arr[4];
|
|
res2 = (uint64_t)xi * arr[8];
|
|
res0 = (res2 >> 32) | (res0 << 32);
|
|
res0 += res1;
|
|
|
|
n = (res0 + (1ULL << 61)) >> 62;
|
|
res0 -= n << 62;
|
|
double x = (int64_t)res0;
|
|
*np = n;
|
|
return x * pi63;
|
|
}
|