mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-09 23:00:07 +00:00
abd383584b
This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
966 lines
39 KiB
C
966 lines
39 KiB
C
/* Copyright (C) 1997-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
/*
|
|
* ISO C99 Standard: 7.22 Type-generic math <tgmath.h>
|
|
*/
|
|
|
|
#ifndef _TGMATH_H
|
|
#define _TGMATH_H 1
|
|
|
|
#define __GLIBC_INTERNAL_STARTING_HEADER_IMPLEMENTATION
|
|
#include <bits/libc-header-start.h>
|
|
|
|
/* Include the needed headers. */
|
|
#include <bits/floatn.h>
|
|
#include <math.h>
|
|
#include <complex.h>
|
|
|
|
|
|
/* There are two variant implementations of type-generic macros in
|
|
this file: one for GCC 8 and later, using __builtin_tgmath and
|
|
where each macro expands each of its arguments only once, and one
|
|
for older GCC, using other compiler extensions but with macros
|
|
expanding their arguments many times (so resulting in exponential
|
|
blowup of the size of expansions when calls to such macros are
|
|
nested inside arguments to such macros). */
|
|
|
|
#define __HAVE_BUILTIN_TGMATH __GNUC_PREREQ (8, 0)
|
|
|
|
#if __GNUC_PREREQ (2, 7)
|
|
|
|
/* Certain cases of narrowing macros only need to call a single
|
|
function so cannot use __builtin_tgmath and do not need any
|
|
complicated logic. */
|
|
# if __HAVE_FLOAT128X
|
|
# error "Unsupported _Float128x type for <tgmath.h>."
|
|
# endif
|
|
# if ((__HAVE_FLOAT64X && !__HAVE_FLOAT128) \
|
|
|| (__HAVE_FLOAT128 && !__HAVE_FLOAT64X))
|
|
# error "Unsupported combination of types for <tgmath.h>."
|
|
# endif
|
|
# define __TGMATH_1_NARROW_D(F, X) \
|
|
(F ## l (X))
|
|
# define __TGMATH_2_NARROW_D(F, X, Y) \
|
|
(F ## l (X, Y))
|
|
# define __TGMATH_1_NARROW_F64X(F, X) \
|
|
(F ## f128 (X))
|
|
# define __TGMATH_2_NARROW_F64X(F, X, Y) \
|
|
(F ## f128 (X, Y))
|
|
# if !__HAVE_FLOAT128
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
(F ## f64 (X))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
(F ## f64 (X, Y))
|
|
# endif
|
|
|
|
# if __HAVE_BUILTIN_TGMATH
|
|
|
|
# if __HAVE_FLOAT16 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F16_ARG(X) X ## f16,
|
|
# else
|
|
# define __TG_F16_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT32 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F32_ARG(X) X ## f32,
|
|
# else
|
|
# define __TG_F32_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT64 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F64_ARG(X) X ## f64,
|
|
# else
|
|
# define __TG_F64_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F128_ARG(X) X ## f128,
|
|
# else
|
|
# define __TG_F128_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT32X && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F32X_ARG(X) X ## f32x,
|
|
# else
|
|
# define __TG_F32X_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT64X && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F64X_ARG(X) X ## f64x,
|
|
# else
|
|
# define __TG_F64X_ARG(X)
|
|
# endif
|
|
# if __HAVE_FLOAT128X && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# define __TG_F128X_ARG(X) X ## f128x,
|
|
# else
|
|
# define __TG_F128X_ARG(X)
|
|
# endif
|
|
|
|
# define __TGMATH_FUNCS(X) X ## f, X, X ## l, \
|
|
__TG_F16_ARG (X) __TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
|
|
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_RCFUNCS(F, C) __TGMATH_FUNCS (F) __TGMATH_FUNCS (C)
|
|
# define __TGMATH_1(F, X) __builtin_tgmath (__TGMATH_FUNCS (F) (X))
|
|
# define __TGMATH_2(F, X, Y) __builtin_tgmath (__TGMATH_FUNCS (F) (X), (Y))
|
|
# define __TGMATH_2STD(F, X, Y) __builtin_tgmath (F ## f, F, F ## l, (X), (Y))
|
|
# define __TGMATH_3(F, X, Y, Z) __builtin_tgmath (__TGMATH_FUNCS (F) \
|
|
(X), (Y), (Z))
|
|
# define __TGMATH_1C(F, C, X) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) (X))
|
|
# define __TGMATH_2C(F, C, X, Y) __builtin_tgmath (__TGMATH_RCFUNCS (F, C) \
|
|
(X), (Y))
|
|
|
|
# define __TGMATH_NARROW_FUNCS_F(X) X, X ## l,
|
|
# define __TGMATH_NARROW_FUNCS_F16(X) \
|
|
__TG_F32_ARG (X) __TG_F64_ARG (X) __TG_F128_ARG (X) \
|
|
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_NARROW_FUNCS_F32(X) \
|
|
__TG_F64_ARG (X) __TG_F128_ARG (X) \
|
|
__TG_F32X_ARG (X) __TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_NARROW_FUNCS_F64(X) \
|
|
__TG_F128_ARG (X) \
|
|
__TG_F64X_ARG (X) __TG_F128X_ARG (X)
|
|
# define __TGMATH_NARROW_FUNCS_F32X(X) \
|
|
__TG_F64X_ARG (X) __TG_F128X_ARG (X) \
|
|
__TG_F64_ARG (X) __TG_F128_ARG (X)
|
|
|
|
# define __TGMATH_1_NARROW_F(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X))
|
|
# define __TGMATH_2_NARROW_F(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F (F) (X), (Y))
|
|
# define __TGMATH_1_NARROW_F16(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X))
|
|
# define __TGMATH_2_NARROW_F16(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F16 (F) (X), (Y))
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32 (F) (X), (Y))
|
|
# define __TGMATH_1_NARROW_F64(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X))
|
|
# define __TGMATH_2_NARROW_F64(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F64 (F) (X), (Y))
|
|
# if __HAVE_FLOAT128
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
__builtin_tgmath (__TGMATH_NARROW_FUNCS_F32X (F) (X), (Y))
|
|
# endif
|
|
|
|
# else /* !__HAVE_BUILTIN_TGMATH. */
|
|
|
|
# ifdef __NO_LONG_DOUBLE_MATH
|
|
# define __tgml(fct) fct
|
|
# else
|
|
# define __tgml(fct) fct ## l
|
|
# endif
|
|
|
|
/* __floating_type expands to 1 if TYPE is a floating type (including
|
|
complex floating types), 0 if TYPE is an integer type (including
|
|
complex integer types). __real_integer_type expands to 1 if TYPE
|
|
is a real integer type. __complex_integer_type expands to 1 if
|
|
TYPE is a complex integer type. All these macros expand to integer
|
|
constant expressions. All these macros can assume their argument
|
|
has an arithmetic type (not vector, decimal floating-point or
|
|
fixed-point), valid to pass to tgmath.h macros. */
|
|
# if __GNUC_PREREQ (3, 1)
|
|
/* __builtin_classify_type expands to an integer constant expression
|
|
in GCC 3.1 and later. Default conversions applied to the argument
|
|
of __builtin_classify_type mean it always returns 1 for real
|
|
integer types rather than ever returning different values for
|
|
character, boolean or enumerated types. */
|
|
# define __floating_type(type) \
|
|
(__builtin_classify_type (__real__ ((type) 0)) == 8)
|
|
# define __real_integer_type(type) \
|
|
(__builtin_classify_type ((type) 0) == 1)
|
|
# define __complex_integer_type(type) \
|
|
(__builtin_classify_type ((type) 0) == 9 \
|
|
&& __builtin_classify_type (__real__ ((type) 0)) == 1)
|
|
# else
|
|
/* GCC versions predating __builtin_classify_type are also looser on
|
|
what counts as an integer constant expression. */
|
|
# define __floating_type(type) (((type) 1.25) != 1)
|
|
# define __real_integer_type(type) (((type) (1.25 + _Complex_I)) == 1)
|
|
# define __complex_integer_type(type) \
|
|
(((type) (1.25 + _Complex_I)) == (1 + _Complex_I))
|
|
# endif
|
|
|
|
/* Whether an expression (of arithmetic type) has a real type. */
|
|
# define __expr_is_real(E) (__builtin_classify_type (E) != 9)
|
|
|
|
/* The tgmath real type for T, where E is 0 if T is an integer type
|
|
and 1 for a floating type. If T has a complex type, it is
|
|
unspecified whether the return type is real or complex (but it has
|
|
the correct corresponding real type). */
|
|
# define __tgmath_real_type_sub(T, E) \
|
|
__typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \
|
|
: (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0))
|
|
|
|
/* The tgmath real type of EXPR. */
|
|
# define __tgmath_real_type(expr) \
|
|
__tgmath_real_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
|
|
__floating_type (__typeof__ (+(expr))))
|
|
|
|
/* The tgmath complex type for T, where E1 is 1 if T has a floating
|
|
type and 0 otherwise, E2 is 1 if T has a real integer type and 0
|
|
otherwise, and E3 is 1 if T has a complex type and 0 otherwise. */
|
|
# define __tgmath_complex_type_sub(T, E1, E2, E3) \
|
|
__typeof__ (*(0 \
|
|
? (__typeof__ (0 ? (T *) 0 : (void *) (!(E1)))) 0 \
|
|
: (__typeof__ (0 \
|
|
? (__typeof__ (0 \
|
|
? (double *) 0 \
|
|
: (void *) (!(E2)))) 0 \
|
|
: (__typeof__ (0 \
|
|
? (_Complex double *) 0 \
|
|
: (void *) (!(E3)))) 0)) 0))
|
|
|
|
/* The tgmath complex type of EXPR. */
|
|
# define __tgmath_complex_type(expr) \
|
|
__tgmath_complex_type_sub (__typeof__ ((__typeof__ (+(expr))) 0), \
|
|
__floating_type (__typeof__ (+(expr))), \
|
|
__real_integer_type (__typeof__ (+(expr))), \
|
|
__complex_integer_type (__typeof__ (+(expr))))
|
|
|
|
# if (__HAVE_DISTINCT_FLOAT16 \
|
|
|| __HAVE_DISTINCT_FLOAT32 \
|
|
|| __HAVE_DISTINCT_FLOAT64 \
|
|
|| __HAVE_DISTINCT_FLOAT32X \
|
|
|| __HAVE_DISTINCT_FLOAT64X \
|
|
|| __HAVE_DISTINCT_FLOAT128X)
|
|
# error "Unsupported _FloatN or _FloatNx types for <tgmath.h>."
|
|
# endif
|
|
|
|
/* Expand to text that checks if ARG_COMB has type _Float128, and if
|
|
so calls the appropriately suffixed FCT (which may include a cast),
|
|
or FCT and CFCT for complex functions, with arguments ARG_CALL. */
|
|
# if __HAVE_DISTINCT_FLOAT128 && __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
# if (!__HAVE_FLOAT64X \
|
|
|| __HAVE_FLOAT64X_LONG_DOUBLE \
|
|
|| !__HAVE_FLOATN_NOT_TYPEDEF)
|
|
# define __TGMATH_F128(arg_comb, fct, arg_call) \
|
|
__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|
|
? fct ## f128 arg_call :
|
|
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
|
|
__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
|
|
? (__expr_is_real (arg_comb) \
|
|
? fct ## f128 arg_call \
|
|
: cfct ## f128 arg_call) :
|
|
# else
|
|
/* _Float64x is a distinct type at the C language level, which must be
|
|
handled like _Float128. */
|
|
# define __TGMATH_F128(arg_comb, fct, arg_call) \
|
|
(__builtin_types_compatible_p (__typeof (+(arg_comb)), _Float128) \
|
|
|| __builtin_types_compatible_p (__typeof (+(arg_comb)), _Float64x)) \
|
|
? fct ## f128 arg_call :
|
|
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) \
|
|
(__builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), _Float128) \
|
|
|| __builtin_types_compatible_p (__typeof (+__real__ (arg_comb)), \
|
|
_Float64x)) \
|
|
? (__expr_is_real (arg_comb) \
|
|
? fct ## f128 arg_call \
|
|
: cfct ## f128 arg_call) :
|
|
# endif
|
|
# else
|
|
# define __TGMATH_F128(arg_comb, fct, arg_call) /* Nothing. */
|
|
# define __TGMATH_CF128(arg_comb, fct, cfct, arg_call) /* Nothing. */
|
|
# endif
|
|
|
|
# endif /* !__HAVE_BUILTIN_TGMATH. */
|
|
|
|
/* We have two kinds of generic macros: to support functions which are
|
|
only defined on real valued parameters and those which are defined
|
|
for complex functions as well. */
|
|
# if __HAVE_BUILTIN_TGMATH
|
|
|
|
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
|
|
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) __TGMATH_1 (Fct, (Val))
|
|
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2 (Fct, (Val1), (Val2))
|
|
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2STD (Fct, (Val1), (Val2))
|
|
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2 (Fct, (Val1), (Val2))
|
|
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
__TGMATH_2STD (Fct, (Val1), (Val2))
|
|
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
|
|
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
|
|
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
|
|
__TGMATH_3 (Fct, (Val1), (Val2), (Val3))
|
|
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
|
|
__TGMATH_1C (Fct, Cfct, (Val))
|
|
# define __TGMATH_UNARY_IMAG(Val, Cfct) __TGMATH_1 (Cfct, (Val))
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
|
|
__TGMATH_1C (Fct, Cfct, (Val))
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
|
|
__TGMATH_1 (Cfct, (Val))
|
|
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
|
|
__TGMATH_2C (Fct, Cfct, (Val1), (Val2))
|
|
|
|
# else /* !__HAVE_BUILTIN_TGMATH. */
|
|
|
|
# define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \
|
|
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val) != 8) \
|
|
? (__tgmath_real_type (Val)) Fct (Val) \
|
|
: (sizeof (+(Val)) == sizeof (float)) \
|
|
? (__tgmath_real_type (Val)) Fct##f (Val) \
|
|
: __TGMATH_F128 ((Val), (__tgmath_real_type (Val)) Fct, \
|
|
(Val)) \
|
|
(__tgmath_real_type (Val)) __tgml(Fct) (Val)))
|
|
|
|
# define __TGMATH_UNARY_REAL_RET_ONLY(Val, Fct) \
|
|
(__extension__ ((sizeof (+(Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val) != 8) \
|
|
? Fct (Val) \
|
|
: (sizeof (+(Val)) == sizeof (float)) \
|
|
? Fct##f (Val) \
|
|
: __TGMATH_F128 ((Val), Fct, (Val)) \
|
|
__tgml(Fct) (Val)))
|
|
|
|
# define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (float)) \
|
|
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
|
|
: __TGMATH_F128 ((Val1), (__tgmath_real_type (Val1)) Fct, \
|
|
(Val1, Val2)) \
|
|
(__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
|
|
|
|
# define __TGMATH_BINARY_FIRST_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (float)) \
|
|
? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \
|
|
: (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2)))
|
|
|
|
# define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
? __TGMATH_F128 ((Val1) + (Val2), \
|
|
(__typeof \
|
|
((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) Fct, \
|
|
(Val1, Val2)) \
|
|
(__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
__tgml(Fct) (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct (Val1, Val2) \
|
|
: (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct##f (Val1, Val2)))
|
|
|
|
# define __TGMATH_BINARY_REAL_STD_ONLY(Val1, Val2, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
__tgml(Fct) (Val1, Val2) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct (Val1, Val2) \
|
|
: (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct##f (Val1, Val2)))
|
|
|
|
# define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2)) == 8) \
|
|
? __TGMATH_F128 ((Val1) + (Val2), \
|
|
(__typeof \
|
|
((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) Fct, \
|
|
(Val1, Val2, Val3)) \
|
|
(__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
__tgml(Fct) (Val1, Val2, Val3) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct (Val1, Val2, Val3) \
|
|
: (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0)) \
|
|
Fct##f (Val1, Val2, Val3)))
|
|
|
|
# define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ((sizeof ((Val1) + (Val2) + (Val3)) > sizeof (double) \
|
|
&& __builtin_classify_type ((Val1) + (Val2) + (Val3)) \
|
|
== 8) \
|
|
? __TGMATH_F128 ((Val1) + (Val2) + (Val3), \
|
|
(__typeof \
|
|
((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0 \
|
|
+ (__tgmath_real_type (Val3)) 0)) Fct, \
|
|
(Val1, Val2, Val3)) \
|
|
(__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0 \
|
|
+ (__tgmath_real_type (Val3)) 0)) \
|
|
__tgml(Fct) (Val1, Val2, Val3) \
|
|
: (sizeof (+(Val1)) == sizeof (double) \
|
|
|| sizeof (+(Val2)) == sizeof (double) \
|
|
|| sizeof (+(Val3)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8 \
|
|
|| __builtin_classify_type (Val2) != 8 \
|
|
|| __builtin_classify_type (Val3) != 8) \
|
|
? (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0 \
|
|
+ (__tgmath_real_type (Val3)) 0)) \
|
|
Fct (Val1, Val2, Val3) \
|
|
: (__typeof ((__tgmath_real_type (Val1)) 0 \
|
|
+ (__tgmath_real_type (Val2)) 0 \
|
|
+ (__tgmath_real_type (Val3)) 0)) \
|
|
Fct##f (Val1, Val2, Val3)))
|
|
|
|
# define __TGMATH_TERNARY_FIRST_REAL_RET_ONLY(Val1, Val2, Val3, Fct) \
|
|
(__extension__ ((sizeof (+(Val1)) == sizeof (double) \
|
|
|| __builtin_classify_type (Val1) != 8) \
|
|
? Fct (Val1, Val2, Val3) \
|
|
: (sizeof (+(Val1)) == sizeof (float)) \
|
|
? Fct##f (Val1, Val2, Val3) \
|
|
: __TGMATH_F128 ((Val1), Fct, (Val1, Val2, Val3)) \
|
|
__tgml(Fct) (Val1, Val2, Val3)))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \
|
|
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
|
? (__expr_is_real (Val) \
|
|
? (__tgmath_complex_type (Val)) Fct (Val) \
|
|
: (__tgmath_complex_type (Val)) Cfct (Val)) \
|
|
: (sizeof (+__real__ (Val)) == sizeof (float)) \
|
|
? (__expr_is_real (Val) \
|
|
? (__tgmath_complex_type (Val)) Fct##f (Val) \
|
|
: (__tgmath_complex_type (Val)) Cfct##f (Val)) \
|
|
: __TGMATH_CF128 ((Val), \
|
|
(__tgmath_complex_type (Val)) Fct, \
|
|
(__tgmath_complex_type (Val)) Cfct, \
|
|
(Val)) \
|
|
(__expr_is_real (Val) \
|
|
? (__tgmath_complex_type (Val)) __tgml(Fct) (Val) \
|
|
: (__tgmath_complex_type (Val)) __tgml(Cfct) (Val))))
|
|
|
|
# define __TGMATH_UNARY_IMAG(Val, Cfct) \
|
|
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
|
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) Cfct (Val) \
|
|
: (sizeof (+__real__ (Val)) == sizeof (float)) \
|
|
? (__typeof__ ((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) Cfct##f (Val) \
|
|
: __TGMATH_F128 (__real__ (Val), \
|
|
(__typeof__ \
|
|
((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) Cfct, (Val)) \
|
|
(__typeof__ ((__tgmath_real_type (Val)) 0 \
|
|
+ _Complex_I)) __tgml(Cfct) (Val)))
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \
|
|
(__extension__ ((sizeof (+__real__ (Val)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val)) != 8) \
|
|
? (__expr_is_real (Val) \
|
|
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Fct (Val) \
|
|
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Cfct (Val)) \
|
|
: (sizeof (+__real__ (Val)) == sizeof (float)) \
|
|
? (__expr_is_real (Val) \
|
|
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Fct##f (Val) \
|
|
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\
|
|
Cfct##f (Val)) \
|
|
: __TGMATH_CF128 ((Val), \
|
|
(__typeof__ \
|
|
(__real__ \
|
|
(__tgmath_real_type (Val)) 0)) Fct, \
|
|
(__typeof__ \
|
|
(__real__ \
|
|
(__tgmath_real_type (Val)) 0)) Cfct, \
|
|
(Val)) \
|
|
(__expr_is_real (Val) \
|
|
? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
|
|
__tgml(Fct) (Val) \
|
|
: (__typeof__ (__real__ (__tgmath_real_type (Val)) 0)) \
|
|
__tgml(Cfct) (Val))))
|
|
# define __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME(Val, Cfct) \
|
|
__TGMATH_UNARY_REAL_IMAG_RET_REAL ((Val), Cfct, Cfct)
|
|
|
|
/* XXX This definition has to be changed as soon as the compiler understands
|
|
the imaginary keyword. */
|
|
# define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \
|
|
(__extension__ ((sizeof (__real__ (Val1) \
|
|
+ __real__ (Val2)) > sizeof (double) \
|
|
&& __builtin_classify_type (__real__ (Val1) \
|
|
+ __real__ (Val2)) == 8) \
|
|
? __TGMATH_CF128 ((Val1) + (Val2), \
|
|
(__typeof \
|
|
((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
Fct, \
|
|
(__typeof \
|
|
((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
Cfct, \
|
|
(Val1, Val2)) \
|
|
(__expr_is_real ((Val1) + (Val2)) \
|
|
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
__tgml(Fct) (Val1, Val2) \
|
|
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
__tgml(Cfct) (Val1, Val2)) \
|
|
: (sizeof (+__real__ (Val1)) == sizeof (double) \
|
|
|| sizeof (+__real__ (Val2)) == sizeof (double) \
|
|
|| __builtin_classify_type (__real__ (Val1)) != 8 \
|
|
|| __builtin_classify_type (__real__ (Val2)) != 8) \
|
|
? (__expr_is_real ((Val1) + (Val2)) \
|
|
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
Fct (Val1, Val2) \
|
|
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
Cfct (Val1, Val2)) \
|
|
: (__expr_is_real ((Val1) + (Val2)) \
|
|
? (__typeof ((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
Fct##f (Val1, Val2) \
|
|
: (__typeof ((__tgmath_complex_type (Val1)) 0 \
|
|
+ (__tgmath_complex_type (Val2)) 0)) \
|
|
Cfct##f (Val1, Val2))))
|
|
|
|
# define __TGMATH_1_NARROW_F(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (double) \
|
|
? F ## l (X) \
|
|
: F (X)))
|
|
# define __TGMATH_2_NARROW_F(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (double) \
|
|
? F ## l (X, Y) \
|
|
: F (X, Y)))
|
|
/* In most cases, these narrowing macro definitions based on sizeof
|
|
ensure that the function called has the right argument format, as
|
|
for other <tgmath.h> macros for compilers before GCC 8, but may not
|
|
have exactly the argument type (among the types with that format)
|
|
specified in the standard logic.
|
|
|
|
In the case of macros for _Float32x return type, when _Float64x
|
|
exists, _Float64 arguments should result in the *f64 function being
|
|
called while _Float32x arguments should result in the *f64x
|
|
function being called. These cases cannot be distinguished using
|
|
sizeof (or at all if the types are typedefs rather than different
|
|
types). However, for these functions it is OK (does not affect the
|
|
final result) to call a function with any argument format at least
|
|
as wide as all the floating-point arguments, unless that affects
|
|
rounding of integer arguments. Integer arguments are considered to
|
|
have type _Float64, so the *f64 functions are preferred for f32x*
|
|
macros when no argument has a wider floating-point type. */
|
|
# if __HAVE_FLOAT64X_LONG_DOUBLE && __HAVE_DISTINCT_FLOAT128
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128 ((X), F, (X)) \
|
|
F ## f64x (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
|
|
F ## f64x (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# define __TGMATH_1_NARROW_F64(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128 ((X), F, (X)) \
|
|
F ## f64x (X) \
|
|
: F ## f128 (X)))
|
|
# define __TGMATH_2_NARROW_F64(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
|
|
F ## f64x (X, Y) \
|
|
: F ## f128 (X, Y)))
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128 ((X), F, (X)) \
|
|
F ## f64x (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? __TGMATH_F128 ((X) + (Y), F, (X, Y)) \
|
|
F ## f64x (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# elif __HAVE_FLOAT128
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float64) \
|
|
? F ## f128 (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float64) \
|
|
? F ## f128 (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# define __TGMATH_1_NARROW_F64(F, X) \
|
|
(F ## f128 (X))
|
|
# define __TGMATH_2_NARROW_F64(F, X, Y) \
|
|
(F ## f128 (X, Y))
|
|
# define __TGMATH_1_NARROW_F32X(F, X) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0) > sizeof (_Float32x) \
|
|
? F ## f64x (X) \
|
|
: F ## f64 (X)))
|
|
# define __TGMATH_2_NARROW_F32X(F, X, Y) \
|
|
(__extension__ (sizeof ((__tgmath_real_type (X)) 0 \
|
|
+ (__tgmath_real_type (Y)) 0) > sizeof (_Float32x) \
|
|
? F ## f64x (X, Y) \
|
|
: F ## f64 (X, Y)))
|
|
# else
|
|
# define __TGMATH_1_NARROW_F32(F, X) \
|
|
(F ## f64 (X))
|
|
# define __TGMATH_2_NARROW_F32(F, X, Y) \
|
|
(F ## f64 (X, Y))
|
|
# endif
|
|
# endif /* !__HAVE_BUILTIN_TGMATH. */
|
|
#else
|
|
# error "Unsupported compiler; you cannot use <tgmath.h>"
|
|
#endif
|
|
|
|
|
|
/* Unary functions defined for real and complex values. */
|
|
|
|
|
|
/* Trigonometric functions. */
|
|
|
|
/* Arc cosine of X. */
|
|
#define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos)
|
|
/* Arc sine of X. */
|
|
#define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin)
|
|
/* Arc tangent of X. */
|
|
#define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan)
|
|
/* Arc tangent of Y/X. */
|
|
#define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2)
|
|
|
|
/* Cosine of X. */
|
|
#define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos)
|
|
/* Sine of X. */
|
|
#define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin)
|
|
/* Tangent of X. */
|
|
#define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan)
|
|
|
|
|
|
/* Hyperbolic functions. */
|
|
|
|
/* Hyperbolic arc cosine of X. */
|
|
#define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh)
|
|
/* Hyperbolic arc sine of X. */
|
|
#define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh)
|
|
/* Hyperbolic arc tangent of X. */
|
|
#define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh)
|
|
|
|
/* Hyperbolic cosine of X. */
|
|
#define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh)
|
|
/* Hyperbolic sine of X. */
|
|
#define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh)
|
|
/* Hyperbolic tangent of X. */
|
|
#define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh)
|
|
|
|
|
|
/* Exponential and logarithmic functions. */
|
|
|
|
/* Exponential function of X. */
|
|
#define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp)
|
|
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
|
#define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp)
|
|
|
|
/* X times (two to the EXP power). */
|
|
#define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp)
|
|
|
|
/* Natural logarithm of X. */
|
|
#define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog)
|
|
|
|
/* Base-ten logarithm of X. */
|
|
#ifdef __USE_GNU
|
|
# define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, clog10)
|
|
#else
|
|
# define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10)
|
|
#endif
|
|
|
|
/* Return exp(X) - 1. */
|
|
#define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1)
|
|
|
|
/* Return log(1 + X). */
|
|
#define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p)
|
|
|
|
/* Return the base 2 signed integral exponent of X. */
|
|
#define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb)
|
|
|
|
/* Compute base-2 exponential of X. */
|
|
#define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2)
|
|
|
|
/* Compute base-2 logarithm of X. */
|
|
#define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2)
|
|
|
|
|
|
/* Power functions. */
|
|
|
|
/* Return X to the Y power. */
|
|
#define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow)
|
|
|
|
/* Return the square root of X. */
|
|
#define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt)
|
|
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
|
#define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot)
|
|
|
|
/* Return the cube root of X. */
|
|
#define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt)
|
|
|
|
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
|
|
|
/* Smallest integral value not less than X. */
|
|
#define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil)
|
|
|
|
/* Absolute value of X. */
|
|
#define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs)
|
|
|
|
/* Largest integer not greater than X. */
|
|
#define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor)
|
|
|
|
/* Floating-point modulo remainder of X/Y. */
|
|
#define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod)
|
|
|
|
/* Round X to integral valuein floating-point format using current
|
|
rounding direction, but do not raise inexact exception. */
|
|
#define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint)
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
#define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round)
|
|
|
|
/* Round X to the integral value in floating-point format nearest but
|
|
not larger in magnitude. */
|
|
#define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc)
|
|
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
|
quotient x/y, with n >= 3. */
|
|
#define remquo(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo)
|
|
|
|
/* Round X to nearest integral value according to current rounding
|
|
direction. */
|
|
#define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lrint)
|
|
#define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llrint)
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
#define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, lround)
|
|
#define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llround)
|
|
|
|
|
|
/* Return X with its signed changed to Y's. */
|
|
#define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign)
|
|
|
|
/* Error and gamma functions. */
|
|
#define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf)
|
|
#define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc)
|
|
#define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma)
|
|
#define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma)
|
|
|
|
|
|
/* Return the integer nearest X in the direction of the
|
|
prevailing rounding mode. */
|
|
#define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint)
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
|
|
/* Return X - epsilon. */
|
|
# define nextdown(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextdown)
|
|
/* Return X + epsilon. */
|
|
# define nextup(Val) __TGMATH_UNARY_REAL_ONLY (Val, nextup)
|
|
#endif
|
|
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
|
#define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter)
|
|
#define nexttoward(Val1, Val2) \
|
|
__TGMATH_BINARY_FIRST_REAL_STD_ONLY (Val1, Val2, nexttoward)
|
|
|
|
/* Return the remainder of integer divison X / Y with infinite precision. */
|
|
#define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder)
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#ifdef __USE_MISC
|
|
# define scalb(Val1, Val2) __TGMATH_BINARY_REAL_STD_ONLY (Val1, Val2, scalb)
|
|
#endif
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn)
|
|
|
|
/* Return X times (2 to the Nth power). */
|
|
#define scalbln(Val1, Val2) \
|
|
__TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln)
|
|
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
|
#define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, ilogb)
|
|
|
|
|
|
/* Return positive difference between X and Y. */
|
|
#define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim)
|
|
|
|
/* Return maximum numeric value from X and Y. */
|
|
#define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax)
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
#define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin)
|
|
|
|
|
|
/* Multiply-add function computed as a ternary operation. */
|
|
#define fma(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma)
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
|
|
/* Round X to nearest integer value, rounding halfway cases to even. */
|
|
# define roundeven(Val) __TGMATH_UNARY_REAL_ONLY (Val, roundeven)
|
|
|
|
# define fromfp(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfp)
|
|
|
|
# define ufromfp(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfp)
|
|
|
|
# define fromfpx(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, fromfpx)
|
|
|
|
# define ufromfpx(Val1, Val2, Val3) \
|
|
__TGMATH_TERNARY_FIRST_REAL_RET_ONLY (Val1, Val2, Val3, ufromfpx)
|
|
|
|
/* Like ilogb, but returning long int. */
|
|
# define llogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, llogb)
|
|
|
|
/* Return value with maximum magnitude. */
|
|
# define fmaxmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmaxmag)
|
|
|
|
/* Return value with minimum magnitude. */
|
|
# define fminmag(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fminmag)
|
|
#endif
|
|
|
|
|
|
/* Absolute value, conjugates, and projection. */
|
|
|
|
/* Argument value of Z. */
|
|
#define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, carg)
|
|
|
|
/* Complex conjugate of Z. */
|
|
#define conj(Val) __TGMATH_UNARY_IMAG (Val, conj)
|
|
|
|
/* Projection of Z onto the Riemann sphere. */
|
|
#define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj)
|
|
|
|
|
|
/* Decomposing complex values. */
|
|
|
|
/* Imaginary part of Z. */
|
|
#define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, cimag)
|
|
|
|
/* Real part of Z. */
|
|
#define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL_SAME (Val, creal)
|
|
|
|
|
|
/* Narrowing functions. */
|
|
|
|
#if __GLIBC_USE (IEC_60559_BFP_EXT_C2X)
|
|
|
|
/* Add. */
|
|
# define fadd(Val1, Val2) __TGMATH_2_NARROW_F (fadd, Val1, Val2)
|
|
# define dadd(Val1, Val2) __TGMATH_2_NARROW_D (dadd, Val1, Val2)
|
|
|
|
/* Divide. */
|
|
# define fdiv(Val1, Val2) __TGMATH_2_NARROW_F (fdiv, Val1, Val2)
|
|
# define ddiv(Val1, Val2) __TGMATH_2_NARROW_D (ddiv, Val1, Val2)
|
|
|
|
/* Multiply. */
|
|
# define fmul(Val1, Val2) __TGMATH_2_NARROW_F (fmul, Val1, Val2)
|
|
# define dmul(Val1, Val2) __TGMATH_2_NARROW_D (dmul, Val1, Val2)
|
|
|
|
/* Subtract. */
|
|
# define fsub(Val1, Val2) __TGMATH_2_NARROW_F (fsub, Val1, Val2)
|
|
# define dsub(Val1, Val2) __TGMATH_2_NARROW_D (dsub, Val1, Val2)
|
|
|
|
/* Square root. */
|
|
# define fsqrt(Val) __TGMATH_1_NARROW_F (fsqrt, Val)
|
|
# define dsqrt(Val) __TGMATH_1_NARROW_D (dsqrt, Val)
|
|
|
|
#endif
|
|
|
|
#if __GLIBC_USE (IEC_60559_TYPES_EXT)
|
|
|
|
# if __HAVE_FLOAT16
|
|
# define f16add(Val1, Val2) __TGMATH_2_NARROW_F16 (f16add, Val1, Val2)
|
|
# define f16div(Val1, Val2) __TGMATH_2_NARROW_F16 (f16div, Val1, Val2)
|
|
# define f16mul(Val1, Val2) __TGMATH_2_NARROW_F16 (f16mul, Val1, Val2)
|
|
# define f16sub(Val1, Val2) __TGMATH_2_NARROW_F16 (f16sub, Val1, Val2)
|
|
# define f16sqrt(Val) __TGMATH_1_NARROW_F16 (f16sqrt, Val)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT32
|
|
# define f32add(Val1, Val2) __TGMATH_2_NARROW_F32 (f32add, Val1, Val2)
|
|
# define f32div(Val1, Val2) __TGMATH_2_NARROW_F32 (f32div, Val1, Val2)
|
|
# define f32mul(Val1, Val2) __TGMATH_2_NARROW_F32 (f32mul, Val1, Val2)
|
|
# define f32sub(Val1, Val2) __TGMATH_2_NARROW_F32 (f32sub, Val1, Val2)
|
|
# define f32sqrt(Val) __TGMATH_1_NARROW_F32 (f32sqrt, Val)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT64 && (__HAVE_FLOAT64X || __HAVE_FLOAT128)
|
|
# define f64add(Val1, Val2) __TGMATH_2_NARROW_F64 (f64add, Val1, Val2)
|
|
# define f64div(Val1, Val2) __TGMATH_2_NARROW_F64 (f64div, Val1, Val2)
|
|
# define f64mul(Val1, Val2) __TGMATH_2_NARROW_F64 (f64mul, Val1, Val2)
|
|
# define f64sub(Val1, Val2) __TGMATH_2_NARROW_F64 (f64sub, Val1, Val2)
|
|
# define f64sqrt(Val) __TGMATH_1_NARROW_F64 (f64sqrt, Val)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT32X
|
|
# define f32xadd(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xadd, Val1, Val2)
|
|
# define f32xdiv(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xdiv, Val1, Val2)
|
|
# define f32xmul(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xmul, Val1, Val2)
|
|
# define f32xsub(Val1, Val2) __TGMATH_2_NARROW_F32X (f32xsub, Val1, Val2)
|
|
# define f32xsqrt(Val) __TGMATH_1_NARROW_F32X (f32xsqrt, Val)
|
|
# endif
|
|
|
|
# if __HAVE_FLOAT64X && (__HAVE_FLOAT128X || __HAVE_FLOAT128)
|
|
# define f64xadd(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xadd, Val1, Val2)
|
|
# define f64xdiv(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xdiv, Val1, Val2)
|
|
# define f64xmul(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xmul, Val1, Val2)
|
|
# define f64xsub(Val1, Val2) __TGMATH_2_NARROW_F64X (f64xsub, Val1, Val2)
|
|
# define f64xsqrt(Val) __TGMATH_1_NARROW_F64X (f64xsqrt, Val)
|
|
# endif
|
|
|
|
#endif
|
|
|
|
#endif /* tgmath.h */
|