glibc/elf/dl-hwcaps.c
Carlos O'Donell 141af660d8 Add comments to vDSO hwcap loading process.
Loading of the vDSO pseudo-hwcap from the type 2 GNU note is
a rather arcane and poorly documented process. Given that I had
a chance to review this code today I thought I would add all
of the things I had to lookup to verify the validity of the
process.

With a single .note.GNU the vDSO can register up to 64 flags,
though in practice you are limited to 64 - _DL_FIRST_EXTRA
bits which on x86 is 12 bits.

The only use of this that I know of is in the Xen support
in Linux where they use the 1st bit to indicate "nosegneg".
I see "We use bit 1 to avoid bugs in some versions of glibc
when bit 0 is used; the choice is otherwise arbitrary.", but
no reference to a glibc bug anywhere. The code as-is should
support bit zero, so we still have that free for future use.

The kernel, glibc, and ld.so.cache must coordinate to ensure
that bit values don't go too high and are used consistently.

---

2013-05-13  Carlos O'Donell  <carlos@redhat.com>

	* elf/dl-hwcaps.c (_dl_important_hwcaps): Comment vDSO hwcap loading.
	* elf/ldconfig.c (is_hwcap_platform): Comment each hwcap check.
	(main): Comment "tls" pseudo-hwcap.
2013-05-14 00:06:35 -04:00

291 lines
8.3 KiB
C

/* Hardware capability support for run-time dynamic loader.
Copyright (C) 2012-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <elf.h>
#include <errno.h>
#include <libintl.h>
#include <unistd.h>
#include <ldsodefs.h>
#include <dl-procinfo.h>
#ifdef _DL_FIRST_PLATFORM
# define _DL_FIRST_EXTRA (_DL_FIRST_PLATFORM + _DL_PLATFORMS_COUNT)
#else
# define _DL_FIRST_EXTRA _DL_HWCAP_COUNT
#endif
/* Return an array of useful/necessary hardware capability names. */
const struct r_strlenpair *
internal_function
_dl_important_hwcaps (const char *platform, size_t platform_len, size_t *sz,
size_t *max_capstrlen)
{
/* Determine how many important bits are set. */
uint64_t masked = GLRO(dl_hwcap) & GLRO(dl_hwcap_mask);
size_t cnt = platform != NULL;
size_t n, m;
size_t total;
struct r_strlenpair *result;
struct r_strlenpair *rp;
char *cp;
/* Count the number of bits set in the masked value. */
for (n = 0; (~((1ULL << n) - 1) & masked) != 0; ++n)
if ((masked & (1ULL << n)) != 0)
++cnt;
#ifdef NEED_DL_SYSINFO_DSO
/* The system-supplied DSO can contain a note of type 2, vendor "GNU".
This gives us a list of names to treat as fake hwcap bits. */
const char *dsocaps = NULL;
size_t dsocapslen = 0;
if (GLRO(dl_sysinfo_map) != NULL)
{
const ElfW(Phdr) *const phdr = GLRO(dl_sysinfo_map)->l_phdr;
const ElfW(Word) phnum = GLRO(dl_sysinfo_map)->l_phnum;
for (uint_fast16_t i = 0; i < phnum; ++i)
if (phdr[i].p_type == PT_NOTE)
{
const ElfW(Addr) start = (phdr[i].p_vaddr
+ GLRO(dl_sysinfo_map)->l_addr);
/* The standard ELF note layout is exactly as the anonymous struct.
The next element is a variable length vendor name of length
VENDORLEN (with a real length rounded to ElfW(Addr)), followed
by the data of length DATALEN (with a real length rounded to
ElfW(Addr)). */
const struct
{
ElfW(Word) vendorlen;
ElfW(Word) datalen;
ElfW(Word) type;
} *note = (const void *) start;
while ((ElfW(Addr)) (note + 1) - start < phdr[i].p_memsz)
{
#define ROUND(len) (((len) + sizeof (ElfW(Word)) - 1) & -sizeof (ElfW(Word)))
/* The layout of the type 2, vendor "GNU" note is as follows:
.long <Number of capabilities enabled by this note>
.long <Capabilities mask> (as mask >> _DL_FIRST_EXTRA).
.byte <The bit number for the next capability>
.asciz <The name of the capability>. */
if (note->type == NT_GNU_HWCAP
&& note->vendorlen == sizeof "GNU"
&& !memcmp ((note + 1), "GNU", sizeof "GNU")
&& note->datalen > 2 * sizeof (ElfW(Word)) + 2)
{
const ElfW(Word) *p = ((const void *) (note + 1)
+ ROUND (sizeof "GNU"));
cnt += *p++;
++p; /* Skip mask word. */
dsocaps = (const char *) p; /* Pseudo-string "<b>name" */
dsocapslen = note->datalen - sizeof *p * 2;
break;
}
note = ((const void *) (note + 1)
+ ROUND (note->vendorlen) + ROUND (note->datalen));
#undef ROUND
}
if (dsocaps != NULL)
break;
}
}
#endif
/* For TLS enabled builds always add 'tls'. */
++cnt;
/* Create temporary data structure to generate result table. */
struct r_strlenpair temp[cnt];
m = 0;
#ifdef NEED_DL_SYSINFO_DSO
if (dsocaps != NULL)
{
/* dsocaps points to the .asciz string, and -1 points to the mask
.long just before the string. */
const ElfW(Word) mask = ((const ElfW(Word) *) dsocaps)[-1];
GLRO(dl_hwcap) |= (uint64_t) mask << _DL_FIRST_EXTRA;
/* Note that we add the dsocaps to the set already chosen by the
LD_HWCAP_MASK environment variable (or default HWCAP_IMPORTANT).
So there is no way to request ignoring an OS-supplied dsocap
string and bit like you can ignore an OS-supplied HWCAP bit. */
GLRO(dl_hwcap_mask) |= (uint64_t) mask << _DL_FIRST_EXTRA;
size_t len;
for (const char *p = dsocaps; p < dsocaps + dsocapslen; p += len + 1)
{
uint_fast8_t bit = *p++;
len = strlen (p);
/* Skip entries that are not enabled in the mask word. */
if (__builtin_expect (mask & ((ElfW(Word)) 1 << bit), 1))
{
temp[m].str = p;
temp[m].len = len;
++m;
}
else
--cnt;
}
}
#endif
for (n = 0; masked != 0; ++n)
if ((masked & (1ULL << n)) != 0)
{
temp[m].str = _dl_hwcap_string (n);
temp[m].len = strlen (temp[m].str);
masked ^= 1ULL << n;
++m;
}
if (platform != NULL)
{
temp[m].str = platform;
temp[m].len = platform_len;
++m;
}
temp[m].str = "tls";
temp[m].len = 3;
++m;
assert (m == cnt);
/* Determine the total size of all strings together. */
if (cnt == 1)
total = temp[0].len + 1;
else
{
total = temp[0].len + temp[cnt - 1].len + 2;
if (cnt > 2)
{
total <<= 1;
for (n = 1; n + 1 < cnt; ++n)
total += temp[n].len + 1;
if (cnt > 3
&& (cnt >= sizeof (size_t) * 8
|| total + (sizeof (*result) << 3)
>= (1UL << (sizeof (size_t) * 8 - cnt + 3))))
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create capability list"));
total <<= cnt - 3;
}
}
/* The result structure: we use a very compressed way to store the
various combinations of capability names. */
*sz = 1 << cnt;
result = (struct r_strlenpair *) malloc (*sz * sizeof (*result) + total);
if (result == NULL)
_dl_signal_error (ENOMEM, NULL, NULL,
N_("cannot create capability list"));
if (cnt == 1)
{
result[0].str = (char *) (result + *sz);
result[0].len = temp[0].len + 1;
result[1].str = (char *) (result + *sz);
result[1].len = 0;
cp = __mempcpy ((char *) (result + *sz), temp[0].str, temp[0].len);
*cp = '/';
*sz = 2;
*max_capstrlen = result[0].len;
return result;
}
/* Fill in the information. This follows the following scheme
(indices from TEMP for four strings):
entry #0: 0, 1, 2, 3 binary: 1111
#1: 0, 1, 3 1101
#2: 0, 2, 3 1011
#3: 0, 3 1001
This allows the representation of all possible combinations of
capability names in the string. First generate the strings. */
result[1].str = result[0].str = cp = (char *) (result + *sz);
#define add(idx) \
cp = __mempcpy (__mempcpy (cp, temp[idx].str, temp[idx].len), "/", 1);
if (cnt == 2)
{
add (1);
add (0);
}
else
{
n = 1 << (cnt - 1);
do
{
n -= 2;
/* We always add the last string. */
add (cnt - 1);
/* Add the strings which have the bit set in N. */
for (m = cnt - 2; m > 0; --m)
if ((n & (1 << m)) != 0)
add (m);
/* Always add the first string. */
add (0);
}
while (n != 0);
}
#undef add
/* Now we are ready to install the string pointers and length. */
for (n = 0; n < (1UL << cnt); ++n)
result[n].len = 0;
n = cnt;
do
{
size_t mask = 1 << --n;
rp = result;
for (m = 1 << cnt; m > 0; ++rp)
if ((--m & mask) != 0)
rp->len += temp[n].len + 1;
}
while (n != 0);
/* The first half of the strings all include the first string. */
n = (1 << cnt) - 2;
rp = &result[2];
while (n != (1UL << (cnt - 1)))
{
if ((--n & 1) != 0)
rp[0].str = rp[-2].str + rp[-2].len;
else
rp[0].str = rp[-1].str;
++rp;
}
/* The second half starts right after the first part of the string of
the corresponding entry in the first half. */
do
{
rp[0].str = rp[-(1 << (cnt - 1))].str + temp[cnt - 1].len + 1;
++rp;
}
while (--n != 0);
/* The maximum string length. */
*max_capstrlen = result[0].len;
return result;
}