mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 22:10:13 +00:00
110 lines
4.1 KiB
C
110 lines
4.1 KiB
C
/*
|
|
* IBM Accurate Mathematical Library
|
|
* written by International Business Machines Corp.
|
|
* Copyright (C) 2001, 2004, 2006, 2011 Free Software Foundation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU Lesser General Public License as published by
|
|
* the Free Software Foundation; either version 2.1 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*********************************************************************/
|
|
/* MODULE_NAME: uroot.c */
|
|
/* */
|
|
/* FUNCTION: usqrt */
|
|
/* */
|
|
/* FILES NEEDED: dla.h endian.h mydefs.h uroot.h */
|
|
/* uroot.tbl */
|
|
/* */
|
|
/* An ultimate sqrt routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of square */
|
|
/* root of x. */
|
|
/* Assumption: Machine arithmetic operations are performed in */
|
|
/* round to nearest mode of IEEE 754 standard. */
|
|
/* */
|
|
/*********************************************************************/
|
|
|
|
#include <math_private.h>
|
|
|
|
typedef unsigned int int4;
|
|
typedef union {int4 i[4]; long double x; double d[2]; } mynumber;
|
|
|
|
static const mynumber
|
|
t512 = {{0x5ff00000, 0x00000000, 0x00000000, 0x00000000 }}, /* 2^512 */
|
|
tm256 = {{0x2ff00000, 0x00000000, 0x00000000, 0x00000000 }}; /* 2^-256 */
|
|
static const double
|
|
two54 = 1.80143985094819840000e+16, /* 0x4350000000000000 */
|
|
twom54 = 5.55111512312578270212e-17; /* 0x3C90000000000000 */
|
|
|
|
/*********************************************************************/
|
|
/* An ultimate sqrt routine. Given an IEEE double machine number x */
|
|
/* it computes the correctly rounded (to nearest) value of square */
|
|
/* root of x. */
|
|
/*********************************************************************/
|
|
long double __ieee754_sqrtl(long double x)
|
|
{
|
|
static const long double big = 134217728.0, big1 = 134217729.0;
|
|
long double t,s,i;
|
|
mynumber a,c;
|
|
int4 k, l, m;
|
|
int n;
|
|
double d;
|
|
|
|
a.x=x;
|
|
k=a.i[0] & 0x7fffffff;
|
|
/*----------------- 2^-1022 <= | x |< 2^1024 -----------------*/
|
|
if (k>0x000fffff && k<0x7ff00000) {
|
|
if (x < 0) return (big1-big1)/(big-big);
|
|
l = (k&0x001fffff)|0x3fe00000;
|
|
if (((a.i[2] & 0x7fffffff) | a.i[3]) != 0) {
|
|
n = (int) ((l - k) * 2) >> 21;
|
|
m = (a.i[2] >> 20) & 0x7ff;
|
|
if (m == 0) {
|
|
a.d[1] *= two54;
|
|
m = ((a.i[2] >> 20) & 0x7ff) - 54;
|
|
}
|
|
m += n;
|
|
if ((int) m > 0)
|
|
a.i[2] = (a.i[2] & 0x800fffff) | (m << 20);
|
|
else if ((int) m <= -54) {
|
|
a.i[2] &= 0x80000000;
|
|
a.i[3] = 0;
|
|
} else {
|
|
m += 54;
|
|
a.i[2] = (a.i[2] & 0x800fffff) | (m << 20);
|
|
a.d[1] *= twom54;
|
|
}
|
|
}
|
|
a.i[0] = l;
|
|
s = a.x;
|
|
d = __ieee754_sqrt (a.d[0]);
|
|
c.i[0] = 0x20000000+((k&0x7fe00000)>>1);
|
|
c.i[1] = 0;
|
|
c.i[2] = 0;
|
|
c.i[3] = 0;
|
|
i = d;
|
|
t = 0.5L * (i + s / i);
|
|
i = 0.5L * (t + s / t);
|
|
return c.x * i;
|
|
}
|
|
else {
|
|
if (k>=0x7ff00000) {
|
|
if (a.i[0] == 0xfff00000 && a.i[1] == 0)
|
|
return (big1-big1)/(big-big); /* sqrt (-Inf) = NaN. */
|
|
return x; /* sqrt (NaN) = NaN, sqrt (+Inf) = +Inf. */
|
|
}
|
|
if (x == 0) return x;
|
|
if (x < 0) return (big1-big1)/(big-big);
|
|
return tm256.x*__ieee754_sqrtl(x*t512.x);
|
|
}
|
|
}
|
|
strong_alias (__ieee754_sqrtl, __sqrtl_finite)
|