mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-18 14:40:06 +00:00
e02920bc02
In non-default rounding modes, tgamma can be slightly less accurate than permitted by glibc's accuracy goals. Part of the problem is error accumulation, addressed in this patch by setting round-to-nearest for internal computations. However, there was also a bug in the code dealing with computing pow (x + n, x + n) where x + n is not exactly representable, providing another source of error even in round-to-nearest mode; it was necessary to address both bugs to get errors for all testcases within glibc's accuracy goals. Given this second fix, accuracy in round-to-nearest mode is also improved (hence regeneration of ulps for tgamma should be from scratch - truncate libm-test-ulps or at least remove existing tgamma entries - so that the expected ulps can be reduced). Some additional complications also arose. Certain tgamma tests should strictly, according to IEEE semantics, overflow or not depending on the rounding mode; this is beyond the scope of glibc's accuracy goals for any function without exactly-determined results, but gen-auto-libm-tests doesn't handle being lax there as it does for underflow. (libm-test.inc also doesn't handle being lax about whether the result in cases very close to the overflow threshold is infinity or a finite value close to overflow, but that doesn't cause problems in this case though I've seen it cause problems with random test generation for some functions.) Thus, spurious-overflow markings, with a comment, are added to auto-libm-test-in (no bug in Bugzilla because the issue is with the testsuite, not a user-visible bug in glibc). And on x86, after the patch I saw ERANGE issues as previously reported by Carlos (see my commentary in <https://sourceware.org/ml/libc-alpha/2015-01/msg00485.html>), which needed addressing by ensuring excess range and precision were eliminated at various points if FLT_EVAL_METHOD != 0. I also noticed and fixed a cosmetic issue where 1.0f was used in long double functions and should have been 1.0L. This completes the move of all functions to testing in all rounding modes with ALL_RM_TEST, so gen-libm-have-vector-test.sh is updated to remove the workaround for some functions not using ALL_RM_TEST. Tested for x86_64, x86, mips64 and powerpc. [BZ #18613] * sysdeps/ieee754/dbl-64/e_gamma_r.c (gamma_positive): Take log of X_ADJ not X when adjusting exponent. (__ieee754_gamma_r): Do intermediate computations in round-to-nearest then adjust overflowing and underflowing results as needed. * sysdeps/ieee754/flt-32/e_gammaf_r.c (gammaf_positive): Take log of X_ADJ not X when adjusting exponent. (__ieee754_gammaf_r): Do intermediate computations in round-to-nearest then adjust overflowing and underflowing results as needed. * sysdeps/ieee754/ldbl-128/e_gammal_r.c (gammal_positive): Take log of X_ADJ not X when adjusting exponent. (__ieee754_gammal_r): Do intermediate computations in round-to-nearest then adjust overflowing and underflowing results as needed. Use 1.0L not 1.0f as numerator of division. * sysdeps/ieee754/ldbl-128ibm/e_gammal_r.c (gammal_positive): Take log of X_ADJ not X when adjusting exponent. (__ieee754_gammal_r): Do intermediate computations in round-to-nearest then adjust overflowing and underflowing results as needed. Use 1.0L not 1.0f as numerator of division. * sysdeps/ieee754/ldbl-96/e_gammal_r.c (gammal_positive): Take log of X_ADJ not X when adjusting exponent. (__ieee754_gammal_r): Do intermediate computations in round-to-nearest then adjust overflowing and underflowing results as needed. Use 1.0L not 1.0f as numerator of division. * math/libm-test.inc (tgamma_test_data): Remove one test. Moved to auto-libm-test-in. (tgamma_test): Use ALL_RM_TEST. * math/auto-libm-test-in: Add one test of tgamma. Mark some other tests of tgamma with spurious-overflow. * math/auto-libm-test-out: Regenerated. * math/gen-libm-have-vector-test.sh: Do not check for START. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
3202 lines
76 KiB
Plaintext
3202 lines
76 KiB
Plaintext
# libm test inputs for gen-auto-libm-tests.c.
|
|
# Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
|
# This file is part of the GNU C Library.
|
|
#
|
|
# The GNU C Library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License, or (at your option) any later version.
|
|
#
|
|
# The GNU C Library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with the GNU C Library; if not, see
|
|
# <http://www.gnu.org/licenses/>. */
|
|
|
|
acos 0
|
|
acos -0
|
|
acos 1
|
|
acos -1
|
|
acos 0.5
|
|
acos -0.5
|
|
acos 0.75
|
|
acos 2e-17
|
|
acos 0.0625
|
|
acos 0x0.ffffffp0
|
|
acos -0x0.ffffffp0
|
|
acos 0x0.ffffffff8p0
|
|
acos -0x0.ffffffff8p0
|
|
acos 0x0.ffffffffffffp0
|
|
acos -0x0.ffffffffffffp0
|
|
acos 0x0.ffffffffffffffffp0
|
|
acos -0x0.ffffffffffffffffp0
|
|
acos 0x1p-5
|
|
acos 0x1p-10
|
|
acos 0x1p-15
|
|
acos 0x1p-20
|
|
acos 0x1p-25
|
|
acos 0x1p-30
|
|
acos 0x1p-35
|
|
acos 0x1p-40
|
|
acos 0x1p-45
|
|
acos 0x1p-50
|
|
acos 0x1p-55
|
|
acos 0x1p-60
|
|
acos 0x1p-65
|
|
acos 0x1p-70
|
|
acos 0x1p-75
|
|
acos 0x1p-80
|
|
acos 0x1p-85
|
|
acos 0x1p-90
|
|
acos 0x1p-95
|
|
acos 0x1p-100
|
|
acos 0x1p-105
|
|
acos 0x1p-110
|
|
acos 0x1p-115
|
|
acos 0x1p-120
|
|
acos -0x1p-5
|
|
acos -0x1p-25
|
|
acos -0x1p-45
|
|
acos -0x1p-65
|
|
acos -0x1p-85
|
|
acos -0x1p-105
|
|
acos -0x1p-125
|
|
acos -0x2.0089a4p-4
|
|
acos 0xf.04aeep-4
|
|
acos 0x5.dd258006121b8p-4
|
|
acos -0x2.35f051e70dbc4p-4
|
|
acos 0xe.9a5c0d7fabb9aa1p-4
|
|
acos 0xe.17513589de79b75p-4
|
|
acos min
|
|
acos -min
|
|
acos min_subnorm
|
|
acos -min_subnorm
|
|
|
|
acosh 1
|
|
acosh 1.625
|
|
acosh 7
|
|
acosh 100
|
|
acosh 1e5
|
|
acosh 0x1p8
|
|
acosh 0x1p9
|
|
acosh 0x1p10
|
|
acosh 0x1p11
|
|
acosh 0x1p12
|
|
acosh 0x1p13
|
|
acosh 0x1p24
|
|
acosh 0x1p25
|
|
acosh 0x1p26
|
|
acosh 0x1p27
|
|
acosh 0x1p28
|
|
acosh 0x1p29
|
|
acosh 0x1p30
|
|
acosh 0x1p31
|
|
acosh 0x1p32
|
|
acosh 0x1p33
|
|
acosh 0x1p48
|
|
acosh 0x1p49
|
|
acosh 0x1p50
|
|
acosh 0x1p51
|
|
acosh 0x1p52
|
|
acosh 0x1p53
|
|
acosh 0x1p54
|
|
acosh 0x1p55
|
|
acosh 0x1p56
|
|
acosh 0x1p57
|
|
acosh 0x1p58
|
|
acosh 0x1p59
|
|
acosh 0x1p100
|
|
acosh 0x1p500
|
|
acosh 0x1p5000
|
|
acosh 0x1.80a368p+0
|
|
acosh 0x1.0b9d3e9fc19fbp+0
|
|
acosh 0x1.11eab6p+0
|
|
acosh 0x1.0fffaap+0
|
|
acosh 0x1.068e0eca105a6p+0
|
|
acosh max no-test-inline
|
|
|
|
asin 0
|
|
asin -0
|
|
asin 0.5
|
|
asin -0.5
|
|
asin 1.0
|
|
asin -1.0
|
|
asin 0.75
|
|
asin 0x0.ffffffp0
|
|
asin -0x0.ffffffp0
|
|
asin 0x0.ffffffff8p0
|
|
asin -0x0.ffffffff8p0
|
|
asin 0x0.ffffffffffffp0
|
|
asin -0x0.ffffffffffffp0
|
|
asin 0x0.ffffffffffffffffp0
|
|
asin -0x0.ffffffffffffffffp0
|
|
asin -0x2.18915cp-4
|
|
asin -0x3.746774p-4
|
|
asin -0x3.1c54d10e5c844p-4
|
|
asin 0xf.c9675fa6fe69f12p-4
|
|
asin -0xa.fc5afp-4
|
|
asin min
|
|
asin -min
|
|
asin min_subnorm
|
|
asin -min_subnorm
|
|
|
|
asinh 0
|
|
asinh -0
|
|
asinh 0.75
|
|
asinh 1
|
|
asinh 10
|
|
asinh 100
|
|
asinh 1e6
|
|
asinh 0x1p8
|
|
asinh 0x1p9
|
|
asinh 0x1p10
|
|
asinh 0x1p11
|
|
asinh 0x1p12
|
|
asinh 0x1p13
|
|
asinh 0x1p24
|
|
asinh 0x1p25
|
|
asinh 0x1p26
|
|
asinh 0x1p27
|
|
asinh 0x1p28
|
|
asinh 0x1p29
|
|
asinh 0x1p30
|
|
asinh 0x1p31
|
|
asinh 0x1p32
|
|
asinh 0x1p33
|
|
asinh 0x1p48
|
|
asinh 0x1p49
|
|
asinh 0x1p50
|
|
asinh 0x1p51
|
|
asinh 0x1p52
|
|
asinh 0x1p53
|
|
asinh 0x1p54
|
|
asinh 0x1p55
|
|
asinh 0x1p56
|
|
asinh 0x1p57
|
|
asinh 0x1p58
|
|
asinh 0x1p59
|
|
asinh 0x1p100
|
|
asinh 0x1p500
|
|
asinh 0x1p5000
|
|
asinh 0x1p-8
|
|
asinh 0x1p-9
|
|
asinh 0x1p-10
|
|
asinh 0x1p-11
|
|
asinh 0x1p-12
|
|
asinh 0x1p-13
|
|
asinh 0x1p-24
|
|
asinh 0x1p-25
|
|
asinh 0x1p-26
|
|
asinh 0x1p-27
|
|
asinh 0x1p-28
|
|
asinh 0x1p-29
|
|
asinh 0x1p-30
|
|
asinh 0x1p-31
|
|
asinh 0x1p-32
|
|
asinh 0x1p-33
|
|
asinh 0x1p-48
|
|
asinh 0x1p-49
|
|
asinh 0x1p-50
|
|
asinh 0x1p-51
|
|
asinh 0x1p-52
|
|
asinh 0x1p-53
|
|
asinh 0x1p-54
|
|
asinh 0x1p-55
|
|
asinh 0x1p-56
|
|
asinh 0x1p-57
|
|
asinh 0x1p-58
|
|
asinh 0x1p-59
|
|
asinh 0x1p-100
|
|
asinh -0x3.d26bb4p-4
|
|
asinh -0x3.bdeef4p-4
|
|
asinh -0x7.fc7fc8p-8
|
|
asinh -0x3.b94a52e6913c2p-4
|
|
asinh 0x7.d8e5a8p-4
|
|
asinh -0x7.63a06320c42e4p-4
|
|
asinh 0x6.f4a93p-4
|
|
asinh -0x7.88bcc8p-4
|
|
asinh 0x1p-500
|
|
asinh 0x1p-5000
|
|
asinh min
|
|
asinh -min
|
|
asinh min_subnorm
|
|
asinh -min_subnorm
|
|
asinh max no-test-inline
|
|
asinh -max no-test-inline
|
|
|
|
atan 0
|
|
atan -0
|
|
atan max
|
|
atan -max
|
|
atan 1
|
|
atan -1
|
|
atan 0.75
|
|
atan 0x1p-5
|
|
atan 2.5
|
|
atan 10
|
|
atan 1e6
|
|
atan 0x1p31
|
|
atan 0x1p-100
|
|
atan 0x1p-600
|
|
atan 0x1p-10000
|
|
atan -0x3.b02d84p-4
|
|
atan -0x3.3fb708p-4
|
|
atan -0x2.3249ap+0
|
|
atan -0x1.363f46p+0
|
|
atan -0x1.ad4c0ap+0
|
|
atan -0x3.eb8e18p+0
|
|
atan min
|
|
atan -min
|
|
atan min_subnorm
|
|
atan -min_subnorm
|
|
|
|
# atan2 (0,x) == 0 for x > 0.
|
|
atan2 0 1
|
|
# atan2 (-0,x) == -0 for x > 0.
|
|
atan2 -0 1
|
|
atan2 0 0
|
|
atan2 -0 0
|
|
# atan2 (+0,x) == +pi for x < 0.
|
|
atan2 0 -1
|
|
# atan2 (-0,x) == -pi for x < 0.
|
|
atan2 -0 -1
|
|
atan2 0 -0
|
|
atan2 -0 -0
|
|
# atan2 (y,+0) == pi/2 for y > 0.
|
|
atan2 1 0
|
|
# atan2 (y,-0) == pi/2 for y > 0.
|
|
atan2 1 -0
|
|
# atan2 (y,+0) == -pi/2 for y < 0.
|
|
atan2 -1 0
|
|
# atan2 (y,-0) == -pi/2 for y < 0.
|
|
atan2 -1 -0
|
|
atan2 max max
|
|
atan2 max -max
|
|
atan2 -max max
|
|
atan2 -max -max
|
|
atan2 max min
|
|
atan2 -max -min
|
|
atan2 -max min
|
|
atan2 max -min
|
|
atan2 max min_subnorm
|
|
atan2 -max -min_subnorm
|
|
atan2 -max min_subnorm
|
|
atan2 max -min_subnorm
|
|
atan2 0.75 1
|
|
atan2 -0.75 1.0
|
|
atan2 0.75 -1.0
|
|
atan2 -0.75 -1.0
|
|
atan2 0.390625 .00029
|
|
atan2 1.390625 0.9296875
|
|
atan2 -0.00756827042671106339 -.001792735857538728036
|
|
atan2 0x1.00000000000001p0 0x1.00000000000001p0
|
|
atan2 0x4.c3841p-4 0x2.f2f308p+0
|
|
atan2 -0xe.cf143p-40 0xd.3de7ap-36
|
|
atan2 0x5.576cf8p-4 0x2.21e65p+0
|
|
atan2 -0x4.29411p-4 0x1.f4755cp+0
|
|
atan2 -0xa.b4101p+20 -0xf.9c4c8p-4
|
|
atan2 0x4.251bb8p-4 0x7.40ac68p+0
|
|
atan2 0x1.47239ep+68 0xa.3ac3cp+68
|
|
atan2 -0x6.b0794p-4 0x3.8ff10cp+0
|
|
atan2 min min
|
|
atan2 min -min
|
|
atan2 -min min
|
|
atan2 -min -min
|
|
atan2 min_subnorm min_subnorm
|
|
atan2 min_subnorm -min_subnorm
|
|
atan2 -min_subnorm min_subnorm
|
|
atan2 -min_subnorm -min_subnorm
|
|
atan2 1 -max
|
|
atan2 -1 -max
|
|
atan2 min -max
|
|
atan2 -min -max
|
|
atan2 min_subnorm -max
|
|
atan2 -min_subnorm -max
|
|
atan2 1 max
|
|
atan2 -1 max
|
|
atan2 min max
|
|
atan2 -min max
|
|
atan2 min_subnorm max
|
|
atan2 -min_subnorm max
|
|
atan2 min 1
|
|
atan2 -min 1
|
|
atan2 min_subnorm 1
|
|
atan2 -min_subnorm 1
|
|
atan2 min -1
|
|
atan2 -min -1
|
|
atan2 min_subnorm -1
|
|
atan2 -min_subnorm -1
|
|
|
|
atanh 0
|
|
atanh -0
|
|
atanh 0.75
|
|
atanh -0.75
|
|
atanh 0.25
|
|
atanh 0x1p-5
|
|
atanh 0x1p-10
|
|
atanh 0x1.2345p-20
|
|
atanh 0x1p-8
|
|
atanh 0x1p-9
|
|
atanh 0x1p-10
|
|
atanh 0x1p-11
|
|
atanh 0x1p-12
|
|
atanh 0x1p-13
|
|
atanh 0x1p-24
|
|
atanh 0x1p-25
|
|
atanh 0x1p-26
|
|
atanh 0x1p-27
|
|
atanh 0x1p-28
|
|
atanh 0x1p-29
|
|
atanh 0x1p-30
|
|
atanh 0x1p-31
|
|
atanh 0x1p-32
|
|
atanh 0x1p-33
|
|
atanh 0x1p-48
|
|
atanh 0x1p-49
|
|
atanh 0x1p-50
|
|
atanh 0x1p-51
|
|
atanh 0x1p-52
|
|
atanh 0x1p-53
|
|
atanh 0x1p-54
|
|
atanh 0x1p-55
|
|
atanh 0x1p-56
|
|
atanh 0x1p-57
|
|
atanh 0x1p-58
|
|
atanh 0x1p-59
|
|
atanh 0x1p-100
|
|
atanh -0x1p-100
|
|
atanh 0x1p-600
|
|
atanh -0x1p-600
|
|
atanh 0x1p-10000
|
|
atanh -0x1p-10000
|
|
atanh -0x6.e6c77p-20
|
|
atanh 0x3.2ca824p-4
|
|
atanh -0x1.cc1d66p-4
|
|
atanh -0xf.cd3809ca8fd28p-4 no-test-inline
|
|
atanh -0x1.04f386p-4
|
|
atanh -0x2.084568p-4
|
|
atanh -0x3.e0a5d8p-4
|
|
atanh 0x3.dfb1f5db0ceccp-4
|
|
atanh 0x2.251b2a64c85dep-4
|
|
atanh -0x2.e3458cp-4
|
|
atanh 0x3.91d9f3c80c72d7acp-4
|
|
atanh -0x2.6c52c26567198p-4
|
|
atanh 0x3.a274ecp-4
|
|
atanh -0x3.f0f519a687b64p-8
|
|
atanh 0x1p-500
|
|
atanh 0x1p-5000
|
|
atanh min
|
|
atanh -min
|
|
atanh min_subnorm
|
|
atanh -min_subnorm
|
|
|
|
# cabs (x,y) == cabs (y,x).
|
|
cabs 0.75 12.390625
|
|
# cabs (x,y) == cabs (-x,y).
|
|
cabs -12.390625 0.75
|
|
# cabs (x,y) == cabs (-y,x).
|
|
cabs -0.75 12.390625
|
|
# cabs (x,y) == cabs (-x,-y).
|
|
cabs -12.390625 -0.75
|
|
# cabs (x,y) == cabs (-y,-x).
|
|
cabs -0.75 -12.390625
|
|
# cabs (x,0) == fabs (x).
|
|
cabs -0.75 0
|
|
cabs 0.75 0
|
|
cabs -1.0 0
|
|
cabs 1.0 0
|
|
cabs -5.7e7 0
|
|
cabs 5.7e7 0
|
|
cabs 0.75 1.25
|
|
cabs -0x1.34be3p-4 -0xc.56623p+0
|
|
cabs -0x1.2b0ff8p+28 -0x2.549fc4p+16
|
|
cabs -0x1.0932cp-80 -0x2.51109p-24
|
|
cabs -0x1.055fb2p+48 0x9.1ce86p+24
|
|
cabs -0x1.26a566p+120 0x4.017b28p+92
|
|
cabs -0x1.0eda54p+28 0xb.09476p+0
|
|
|
|
# carg (x + i 0) == 0 for x > 0.
|
|
carg 2.0 0
|
|
# carg (x - i 0) == -0 for x > 0.
|
|
carg 2.0 -0
|
|
carg 0 0
|
|
carg 0 -0
|
|
# carg (x + i 0) == +pi for x < 0.
|
|
carg -2.0 0
|
|
# carg (x - i 0) == -pi for x < 0.
|
|
carg -2.0 -0
|
|
carg -0 0
|
|
carg -0 -0
|
|
# carg (+0 + i y) == pi/2 for y > 0.
|
|
carg 0 2.0
|
|
# carg (-0 + i y) == pi/2 for y > 0.
|
|
carg -0 2.0
|
|
# carg (+0 + i y) == -pi/2 for y < 0.
|
|
carg 0 -2.0
|
|
# carg (-0 + i y) == -pi/2 for y < 0.
|
|
carg -0 -2.0
|
|
carg 0x2.f2f308p+0 0x4.c3841p-4
|
|
carg 0xd.3de7ap-36 -0xe.cf143p-40
|
|
carg 0x2.21e65p+0 0x5.576cf8p-4
|
|
carg 0x1.f4755cp+0 -0x4.29411p-4
|
|
carg -0xf.9c4c8p-4 -0xa.b4101p+20
|
|
carg 0x7.40ac68p+0 0x4.251bb8p-4
|
|
carg 0xa.3ac3cp+68 0x1.47239ep+68
|
|
carg 0x3.8ff10cp+0 -0x6.b0794p-4
|
|
|
|
cbrt 0.0
|
|
cbrt -0
|
|
cbrt -0.001
|
|
cbrt 8
|
|
cbrt -27.0
|
|
cbrt 0.9921875
|
|
cbrt 0.75
|
|
cbrt 0x1p16383
|
|
cbrt 0x1p-16383
|
|
cbrt 1e5
|
|
cbrt 0x3.132634p+0
|
|
cbrt -0xc.8d0442f2f0d1p-492
|
|
cbrt -0xa.6b142p+40
|
|
cbrt -0x1.f28ab85f3580ap-128
|
|
cbrt max
|
|
cbrt -max
|
|
cbrt min
|
|
cbrt -min
|
|
cbrt min_subnorm
|
|
cbrt -min_subnorm
|
|
|
|
ccos 0.0 0.0
|
|
ccos -0 0.0
|
|
ccos 0.0 -0
|
|
ccos -0 -0
|
|
|
|
ccos 0.75 1.25
|
|
ccos -2 -3
|
|
|
|
ccos 0.75 89.5
|
|
ccos 0.75 -89.5
|
|
ccos -0.75 89.5
|
|
ccos -0.75 -89.5
|
|
ccos 0.75 710.5
|
|
ccos 0.75 -710.5
|
|
ccos -0.75 710.5
|
|
ccos -0.75 -710.5
|
|
ccos 0.75 11357.25
|
|
ccos 0.75 -11357.25
|
|
ccos -0.75 11357.25
|
|
ccos -0.75 -11357.25
|
|
|
|
ccos 0x1p-149 180
|
|
ccos 0x1p-1074 1440
|
|
ccos 0x1p-16434 22730
|
|
|
|
ccos min_subnorm_p120 0x1p-120
|
|
ccos 0x1p-120 min_subnorm_p120
|
|
|
|
ccos min 1
|
|
ccos -min 1
|
|
ccos min_subnorm 80
|
|
ccos -min_subnorm 80
|
|
|
|
ccosh 0.0 0.0
|
|
ccosh -0 0.0
|
|
ccosh 0.0 -0
|
|
ccosh -0 -0
|
|
|
|
ccosh 0.75 1.25
|
|
ccosh -2 -3
|
|
|
|
ccosh 89.5 0.75
|
|
ccosh -89.5 0.75
|
|
ccosh 89.5 -0.75
|
|
ccosh -89.5 -0.75
|
|
ccosh 710.5 0.75
|
|
ccosh -710.5 0.75
|
|
ccosh 710.5 -0.75
|
|
ccosh -710.5 -0.75
|
|
ccosh 11357.25 0.75
|
|
ccosh -11357.25 0.75
|
|
ccosh 11357.25 -0.75
|
|
ccosh -11357.25 -0.75
|
|
|
|
ccosh 180 0x1p-149
|
|
ccosh 1440 0x1p-1074
|
|
ccosh 22730 0x1p-16434
|
|
|
|
ccosh min_subnorm_p120 0x1p-120
|
|
ccosh 0x1p-120 min_subnorm_p120
|
|
|
|
ccosh 1 min
|
|
ccosh 1 -min
|
|
ccosh 80 min_subnorm
|
|
ccosh 80 -min_subnorm
|
|
|
|
cexp 0 0
|
|
cexp -0 0
|
|
cexp 0 -0
|
|
cexp -0 -0
|
|
|
|
cexp 0.75 1.25
|
|
cexp -2.0 -3.0
|
|
|
|
cexp 0 0x1p65
|
|
cexp 0 -0x1p65
|
|
cexp 50 0x1p127
|
|
|
|
cexp 0 1e22
|
|
cexp 0 0x1p1023
|
|
cexp 500 0x1p1023
|
|
|
|
cexp 0 0x1p16383
|
|
cexp -10000 0x1p16383
|
|
|
|
cexp 88.75 0.75
|
|
cexp -95 0.75
|
|
cexp 709.8125 0.75
|
|
cexp -720 0.75
|
|
cexp 11356.5625 0.75
|
|
cexp -11370 0.75
|
|
|
|
cexp 180 0x1p-149
|
|
cexp 1440 0x1p-1074
|
|
cexp 22730 0x1p-16434
|
|
|
|
cexp 1e6 0
|
|
cexp 1e6 min
|
|
cexp 1e6 -min
|
|
|
|
cexp 1 min
|
|
cexp 1 -min
|
|
cexp 80 min_subnorm
|
|
cexp 80 -min_subnorm
|
|
|
|
cexp min min_subnorm
|
|
cexp min -min_subnorm
|
|
|
|
clog 0.75 1.25
|
|
clog -2 -3
|
|
|
|
clog 0x2.f2f308p+0 0x4.c3841p-4
|
|
clog 0xd.3de7ap-36 -0xe.cf143p-40
|
|
clog 0x2.21e65p+0 0x5.576cf8p-4
|
|
clog 0x1.f4755cp+0 -0x4.29411p-4
|
|
clog -0xf.9c4c8p-4 -0xa.b4101p+20
|
|
clog 0x7.40ac68p+0 0x4.251bb8p-4
|
|
clog 0xa.3ac3cp+68 0x1.47239ep+68
|
|
clog 0x3.8ff10cp+0 -0x6.b0794p-4
|
|
|
|
clog 0xa.a39ffp-4 -0x2.360c38p-4
|
|
clog 0x6.9a4569067b6ecp-4 0xb.0a30d15e7d798p-4
|
|
clog -0x1.105436p+0 -0x6.66396df3cc7ap-4
|
|
clog -0x2.c90b952282392dep-4 0x1.43cda16634cc7046p+0
|
|
|
|
clog -0x9.93d164127d9fp-4 0x7.c5c8d8p-4
|
|
clog -0xa.5920ap-4 -0x6.2cda5p-4
|
|
clog 0xd.d05c38ebb1b4p+60 -0x3.c22fdp+44
|
|
|
|
clog -0xa.19f8ec252c58d5p-4 0x7.d10cdec29a141538p-4
|
|
clog -0xa.7ac41a0b417cb8fp-4 -0x6.c5a32eaeedd4p-4
|
|
clog 0x3.c16p-136 0x8p-152
|
|
clog -0x1.0a69de710590dp+0 -0x7.bc7e121e2b0d1088p-4
|
|
|
|
clog 0x1.fffffep+127 0x1.fffffep+127
|
|
clog 0x1.fffffep+127 1.0
|
|
clog 0x1p-149 0x1p-149
|
|
clog 0x1p-147 0x1p-147
|
|
clog 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
clog 0x1.fffffffffffffp+1023 0x1p+1023
|
|
clog 0x1p-1074 0x1p-1074
|
|
clog 0x1p-1073 0x1p-1073
|
|
clog 0x1.fp+16383 0x1.fp+16383
|
|
clog 0x1.fp+16383 0x1p+16383
|
|
clog 0x1p-16440 0x1p-16441
|
|
|
|
clog 0x1p-149 0x1.fp+127
|
|
clog -0x1p-149 0x1.fp+127
|
|
clog 0x1p-149 -0x1.fp+127
|
|
clog -0x1p-149 -0x1.fp+127
|
|
clog -0x1.fp+127 0x1p-149
|
|
clog -0x1.fp+127 -0x1p-149
|
|
clog 0x1.fp+127 0x1p-149
|
|
clog 0x1.fp+127 -0x1p-149
|
|
clog 0x1p-1074 0x1.fp+1023
|
|
clog -0x1p-1074 0x1.fp+1023
|
|
clog 0x1p-1074 -0x1.fp+1023
|
|
clog -0x1p-1074 -0x1.fp+1023
|
|
clog -0x1.fp+1023 0x1p-1074
|
|
clog -0x1.fp+1023 -0x1p-1074
|
|
clog 0x1.fp+1023 0x1p-1074
|
|
clog 0x1.fp+1023 -0x1p-1074
|
|
clog 0x1p-16445 0x1.fp+16383
|
|
clog -0x1p-16445 0x1.fp+16383
|
|
clog 0x1p-16445 -0x1.fp+16383
|
|
clog -0x1p-16445 -0x1.fp+16383
|
|
clog -0x1.fp+16383 0x1p-16445
|
|
clog -0x1.fp+16383 -0x1p-16445
|
|
clog 0x1.fp+16383 0x1p-16445
|
|
clog 0x1.fp+16383 -0x1p-16445
|
|
clog 0x1p-16494 0x1.fp+16383
|
|
clog -0x1p-16494 0x1.fp+16383
|
|
clog 0x1p-16494 -0x1.fp+16383
|
|
clog -0x1p-16494 -0x1.fp+16383
|
|
clog -0x1.fp+16383 0x1p-16494
|
|
clog -0x1.fp+16383 -0x1p-16494
|
|
clog 0x1.fp+16383 0x1p-16494
|
|
clog 0x1.fp+16383 -0x1p-16494
|
|
|
|
clog 1.0 0x1.234566p-10
|
|
clog -1.0 0x1.234566p-20
|
|
clog 0x1.234566p-30 1.0
|
|
clog -0x1.234566p-40 -1.0
|
|
clog 0x1.234566p-50 1.0
|
|
clog 0x1.234566p-60 1.0
|
|
clog 0x1p-62 1.0
|
|
clog 0x1p-63 1.0
|
|
clog 0x1p-64 1.0
|
|
clog 0x1p-510 1.0
|
|
clog 0x1p-511 1.0
|
|
clog 0x1p-512 1.0
|
|
clog 0x1p-8190 1.0
|
|
clog 0x1p-8191 1.0
|
|
clog 0x1p-8192 1.0
|
|
|
|
clog 0x1.000566p0 0x1.234p-10
|
|
clog 0x1.000566p0 0x1.234p-100
|
|
clog -0x1.0000000123456p0 0x1.2345678p-30
|
|
clog -0x1.0000000123456p0 0x1.2345678p-1000
|
|
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-60
|
|
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-1000
|
|
|
|
clog 0x0.ffffffp0 0x0.ffffffp-100
|
|
clog 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
|
|
clog 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000
|
|
|
|
clog 0x1a6p-10 0x3a5p-10
|
|
clog 0xf2p-10 0x3e3p-10
|
|
clog 0x4d4ep-15 0x6605p-15
|
|
clog 0x2818p-15 0x798fp-15
|
|
clog 0x9b57bp-20 0xcb7b4p-20
|
|
clog 0x2731p-20 0xfffd0p-20
|
|
clog 0x2ede88p-23 0x771c3fp-23
|
|
clog 0x11682p-23 0x7ffed1p-23
|
|
clog 0xa1f2c1p-24 0xc643aep-24
|
|
clog 0x659feap-24 0xeaf6f9p-24
|
|
clog 0x4447d7175p-35 0x6c445e00ap-35
|
|
clog 0x2dd46725bp-35 0x7783a1284p-35
|
|
clog 0x164c74eea876p-45 0x16f393482f77p-45
|
|
clog 0xfe961079616p-45 0x1bc37e09e6d1p-45
|
|
clog 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
|
|
clog 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
|
|
clog 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
|
|
clog 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
|
|
clog 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
|
|
clog 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
|
|
clog 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
|
|
clog 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
|
|
clog 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
|
|
clog 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
|
|
clog 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
|
|
clog 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
|
|
clog 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
|
|
clog 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
|
|
clog 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
|
|
clog 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
|
|
clog 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
|
|
clog 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
|
|
clog 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
|
|
clog 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
|
|
clog 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
|
|
clog 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
|
|
clog 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
|
|
clog 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
|
|
clog 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
|
|
clog 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
|
|
clog 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
|
|
clog 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
|
|
clog 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115
|
|
|
|
clog10 0.75 1.25
|
|
clog10 -2 -3
|
|
|
|
clog10 0x2.f2f308p+0 0x4.c3841p-4
|
|
clog10 0xd.3de7ap-36 -0xe.cf143p-40
|
|
clog10 0x2.21e65p+0 0x5.576cf8p-4
|
|
clog10 0x1.f4755cp+0 -0x4.29411p-4
|
|
clog10 -0xf.9c4c8p-4 -0xa.b4101p+20
|
|
clog10 0x7.40ac68p+0 0x4.251bb8p-4
|
|
clog10 0xa.3ac3cp+68 0x1.47239ep+68
|
|
clog10 0x3.8ff10cp+0 -0x6.b0794p-4
|
|
|
|
clog10 0x2.83f8ap+0 -0xb.0b529p-4
|
|
clog10 -0x2.eb21fcp-4 -0x6.59bbc8p-4
|
|
clog10 -0x3.3f7fc4p-4 0xb.ba599p-4
|
|
clog10 0x1.cd1ab2p-124 -0x8p-152
|
|
clog10 0xa.32054p-4 0x2.c7e71cp-4
|
|
clog10 -0x5.9ecf8c7b5a0f4p-4 0xa.a945e5f8761c8p-4
|
|
clog10 0x1.7a858p+0 -0x6.d940dp-4
|
|
clog10 -0x2.51320d99da5a2p-4 0x3.b8176p-4
|
|
clog10 -0x1.25c2d3e172df8p+0 0
|
|
clog10 0x1.0c684e35d0b2ap+0 -0x7.37df8a65c28fp-4
|
|
|
|
clog10 -0x9.93d164127d9fp-4 0x7.c5c8d8p-4
|
|
clog10 -0xa.5920ap-4 -0x6.2cda5p-4
|
|
clog10 0xd.d05c38ebb1b4p+60 -0x3.c22fdp+44
|
|
|
|
clog10 -0xa.19f8ec252c58d5p-4 0x7.d10cdec29a141538p-4
|
|
clog10 -0xa.7ac41a0b417cb8fp-4 -0x6.c5a32eaeedd4p-4
|
|
clog10 0x3.c16p-136 0x8p-152
|
|
clog10 -0x1.0a69de710590dp+0 -0x7.bc7e121e2b0d1088p-4
|
|
|
|
clog10 0x1.fffffep+127 0x1.fffffep+127
|
|
clog10 0x1.fffffep+127 1.0
|
|
clog10 0x1p-149 0x1p-149
|
|
clog10 0x1p-147 0x1p-147
|
|
clog10 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
clog10 0x1.fffffffffffffp+1023 0x1p+1023
|
|
clog10 0x1p-1074 0x1p-1074
|
|
clog10 0x1p-1073 0x1p-1073
|
|
clog10 0x1.fp+16383 0x1.fp+16383
|
|
clog10 0x1.fp+16383 0x1p+16383
|
|
clog10 0x1p-16440 0x1p-16441
|
|
|
|
clog10 0x1p-149 0x1.fp+127
|
|
clog10 -0x1p-149 0x1.fp+127
|
|
clog10 0x1p-149 -0x1.fp+127
|
|
clog10 -0x1p-149 -0x1.fp+127
|
|
clog10 -0x1.fp+127 0x1p-149
|
|
clog10 -0x1.fp+127 -0x1p-149
|
|
clog10 0x1.fp+127 0x1p-149
|
|
clog10 0x1.fp+127 -0x1p-149
|
|
clog10 0x1p-1074 0x1.fp+1023
|
|
clog10 -0x1p-1074 0x1.fp+1023
|
|
clog10 0x1p-1074 -0x1.fp+1023
|
|
clog10 -0x1p-1074 -0x1.fp+1023
|
|
clog10 -0x1.fp+1023 0x1p-1074
|
|
clog10 -0x1.fp+1023 -0x1p-1074
|
|
clog10 0x1.fp+1023 0x1p-1074
|
|
clog10 0x1.fp+1023 -0x1p-1074
|
|
clog10 0x1p-16445 0x1.fp+16383
|
|
clog10 -0x1p-16445 0x1.fp+16383
|
|
clog10 0x1p-16445 -0x1.fp+16383
|
|
clog10 -0x1p-16445 -0x1.fp+16383
|
|
clog10 -0x1.fp+16383 0x1p-16445
|
|
clog10 -0x1.fp+16383 -0x1p-16445
|
|
clog10 0x1.fp+16383 0x1p-16445
|
|
clog10 0x1.fp+16383 -0x1p-16445
|
|
clog10 0x1p-16494 0x1.fp+16383
|
|
clog10 -0x1p-16494 0x1.fp+16383
|
|
clog10 0x1p-16494 -0x1.fp+16383
|
|
clog10 -0x1p-16494 -0x1.fp+16383
|
|
clog10 -0x1.fp+16383 0x1p-16494
|
|
clog10 -0x1.fp+16383 -0x1p-16494
|
|
clog10 0x1.fp+16383 0x1p-16494
|
|
clog10 0x1.fp+16383 -0x1p-16494
|
|
|
|
clog10 1.0 0x1.234566p-10
|
|
clog10 -1.0 0x1.234566p-20
|
|
clog10 0x1.234566p-30 1.0
|
|
clog10 -0x1.234566p-40 -1.0
|
|
clog10 0x1.234566p-50 1.0
|
|
clog10 0x1.234566p-60 1.0
|
|
clog10 0x1p-61 1.0
|
|
clog10 0x1p-62 1.0
|
|
clog10 0x1p-63 1.0
|
|
clog10 0x1p-509 1.0
|
|
clog10 0x1p-510 1.0
|
|
clog10 0x1p-511 1.0
|
|
clog10 0x1p-8189 1.0
|
|
clog10 0x1p-8190 1.0
|
|
clog10 0x1p-8191 1.0
|
|
|
|
clog10 0x1.000566p0 0x1.234p-10
|
|
clog10 0x1.000566p0 0x1.234p-100
|
|
clog10 -0x1.0000000123456p0 0x1.2345678p-30
|
|
clog10 -0x1.0000000123456p0 0x1.2345678p-1000
|
|
clog10 0x1.00000000000000123456789abcp0 0x1.23456789p-60
|
|
clog10 0x1.00000000000000123456789abcp0 0x1.23456789p-1000
|
|
|
|
clog10 0x0.ffffffp0 0x0.ffffffp-100
|
|
clog10 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
|
|
clog10 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000
|
|
|
|
clog10 0x1a6p-10 0x3a5p-10
|
|
clog10 0xf2p-10 0x3e3p-10
|
|
clog10 0x4d4ep-15 0x6605p-15
|
|
clog10 0x2818p-15 0x798fp-15
|
|
clog10 0x9b57bp-20 0xcb7b4p-20
|
|
clog10 0x2731p-20 0xfffd0p-20
|
|
clog10 0x2ede88p-23 0x771c3fp-23
|
|
clog10 0x11682p-23 0x7ffed1p-23
|
|
clog10 0xa1f2c1p-24 0xc643aep-24
|
|
clog10 0x659feap-24 0xeaf6f9p-24
|
|
clog10 0x4447d7175p-35 0x6c445e00ap-35
|
|
clog10 0x2dd46725bp-35 0x7783a1284p-35
|
|
clog10 0x164c74eea876p-45 0x16f393482f77p-45
|
|
clog10 0xfe961079616p-45 0x1bc37e09e6d1p-45
|
|
clog10 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
|
|
clog10 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
|
|
clog10 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
|
|
clog10 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
|
|
clog10 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
|
|
clog10 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
|
|
clog10 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
|
|
clog10 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
|
|
clog10 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
|
|
clog10 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
|
|
clog10 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
|
|
clog10 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
|
|
clog10 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
|
|
clog10 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
|
|
clog10 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
|
|
clog10 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
|
|
clog10 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
|
|
clog10 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
|
|
clog10 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
|
|
clog10 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
|
|
clog10 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
|
|
clog10 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
|
|
clog10 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
|
|
clog10 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
|
|
clog10 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
|
|
clog10 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
|
|
clog10 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
|
|
clog10 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
|
|
clog10 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115
|
|
|
|
cos 0
|
|
cos -0
|
|
cos pi/3
|
|
cos 2pi/3
|
|
cos pi/2
|
|
cos 0.75
|
|
cos 0x1p65
|
|
cos -0x1p65
|
|
cos 0.80190127184058835
|
|
cos 0x1.442f74p+15
|
|
cos 1e22
|
|
cos 0x1p1023
|
|
cos 0x1p16383
|
|
cos 0x1p+120
|
|
cos 0x1p+127
|
|
cos 0x1.fffff8p+127
|
|
cos 0x1.fffffep+127
|
|
cos 0x1p+50
|
|
cos 0x1p+28
|
|
cos 0x1.000000cf4a2a2p0
|
|
cos 0x1.0000010b239a9p0
|
|
cos 0x1.00000162a932bp0
|
|
cos 0x1.000002d452a10p0
|
|
cos 0x1.000005bc7d86dp0
|
|
cos 0x1.200145a975ce6p32
|
|
cos 1
|
|
cos 2
|
|
cos 3
|
|
cos 4
|
|
cos 5
|
|
cos 6
|
|
cos 7
|
|
cos 8
|
|
cos 9
|
|
cos 10
|
|
cos max
|
|
cos -max
|
|
cos min
|
|
cos -min
|
|
cos min_subnorm
|
|
cos -min_subnorm
|
|
cos -0x3.3de320f6be87ep+1020
|
|
cos 0xe.9f1e5bc3bb88p+112
|
|
cos 0x4.7857dp+68
|
|
|
|
cosh 0
|
|
cosh -0
|
|
cosh 0.75
|
|
cosh 709.8893558127259666434838436543941497802734375
|
|
cosh -709.8893558127259666434838436543941497802734375
|
|
cosh 22
|
|
cosh 23
|
|
cosh 24
|
|
cosh 0x1p-5
|
|
cosh 0x1p-20
|
|
cosh -1
|
|
cosh 50
|
|
cosh -0xb.60713p+0
|
|
cosh -0x3.cee48p+0
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
cosh max no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -max no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh min
|
|
cosh -min
|
|
cosh min_subnorm
|
|
cosh -min_subnorm
|
|
cosh 0x1p-56
|
|
cosh -0x1p-56
|
|
cosh 0x1p-72
|
|
cosh -0x1p-72
|
|
# Test values either side of overflow for each floating-point format.
|
|
cosh 0x5.96a7ep+4
|
|
cosh 0x5.96a7e8p+4
|
|
cosh -0x5.96a7ep+4
|
|
cosh -0x5.96a7e8p+4
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
cosh 0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fap+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fcp+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fb624d358b213a7p+8 xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c679d1f73f0fb624d358b213a8p+8 xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a4p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a8p+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh 0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a6c24b6c9b494cp+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
cosh -0x2.c5d37700c6bb03a6c24b6c9b494ep+12 no-test-inline xfail-rounding:ldbl-128ibm
|
|
|
|
cpow 1 0 0 0 ignore-zero-inf-sign
|
|
cpow 2 0 10 0 ignore-zero-inf-sign
|
|
# Bug 14473: cpow results inaccurate.
|
|
cpow e 0 0 2pi xfail
|
|
cpow 2 3 4 0 xfail-rounding
|
|
|
|
cpow 0.75 1.25 0.75 1.25 xfail-rounding
|
|
cpow 0.75 1.25 1.0 1.0 xfail-rounding
|
|
cpow 0.75 1.25 1.0 0.0
|
|
cpow 0.75 1.25 0.0 1.0
|
|
|
|
csin 0.0 0.0
|
|
csin -0 0.0
|
|
csin 0.0 -0
|
|
csin -0 -0
|
|
|
|
csin 0.75 1.25
|
|
csin -2 -3
|
|
|
|
csin 0.75 89.5
|
|
csin 0.75 -89.5
|
|
csin -0.75 89.5
|
|
csin -0.75 -89.5
|
|
csin 0.75 710.5
|
|
csin 0.75 -710.5
|
|
csin -0.75 710.5
|
|
csin -0.75 -710.5
|
|
csin 0.75 11357.25
|
|
csin 0.75 -11357.25
|
|
csin -0.75 11357.25
|
|
csin -0.75 -11357.25
|
|
|
|
csin 0.75 1e6
|
|
csin 0.75 -1e6
|
|
csin -0.75 1e6
|
|
csin -0.75 -1e6
|
|
|
|
csin 0x1p-149 180
|
|
csin 0x1p-1074 1440
|
|
csin 0x1p-16434 22730
|
|
|
|
csin min 1
|
|
csin -min 1
|
|
csin min_subnorm 80
|
|
csin -min_subnorm 80
|
|
|
|
csinh 0.0 0.0
|
|
csinh -0 0.0
|
|
csinh 0.0 -0
|
|
csinh -0 -0
|
|
|
|
csinh 0.75 1.25
|
|
csinh -2 -3
|
|
|
|
csinh 89.5 0.75
|
|
csinh -89.5 0.75
|
|
csinh 89.5 -0.75
|
|
csinh -89.5 -0.75
|
|
csinh 710.5 0.75
|
|
csinh -710.5 0.75
|
|
csinh 710.5 -0.75
|
|
csinh -710.5 -0.75
|
|
csinh 11357.25 0.75
|
|
csinh -11357.25 0.75
|
|
csinh 11357.25 -0.75
|
|
csinh -11357.25 -0.75
|
|
|
|
csinh 1e6 0.75
|
|
csinh -1e6 0.75
|
|
csinh 1e6 -0.75
|
|
csinh -1e6 -0.75
|
|
|
|
csinh 180 0x1p-149
|
|
csinh 1440 0x1p-1074
|
|
csinh 22730 0x1p-16434
|
|
|
|
csinh 1 min
|
|
csinh 1 -min
|
|
csinh 80 min_subnorm
|
|
csinh 80 -min_subnorm
|
|
|
|
csqrt 0 0
|
|
csqrt 0 -0
|
|
csqrt -0 0
|
|
csqrt -0 -0
|
|
|
|
csqrt 16.0 -30.0
|
|
csqrt -1 0
|
|
csqrt 0 2
|
|
csqrt 119 120
|
|
csqrt 0.75 1.25
|
|
csqrt -2 -3
|
|
csqrt -2 3
|
|
# Principal square root should be returned (i.e., non-negative real part).
|
|
csqrt 0 -1
|
|
|
|
csqrt -0xe.6432ap-4 0xe.8175p-4
|
|
csqrt -0x4.d01448p-4 -0x7.c1915p+0
|
|
csqrt -0xd.e1d5fp-4 -0x1.054226p+4
|
|
csqrt 0x5.39e238p+0 -0x4.576278p-4
|
|
csqrt -0xe.735dbp+0 -0x5.26cb98p+40
|
|
csqrt -0x7.915fafbe9f588p-4 -0x2.5e01bcp+0
|
|
csqrt 0xe.229827fe17d08p-4 0xd.849ecp-4
|
|
csqrt -0x4.d0144005d7af4p-4 -0x7.c19148p+0
|
|
csqrt 0x8p-152 0x7.8p-148
|
|
csqrt -0x4.82773b736291p-4 -0x1.bcb7cep+0
|
|
csqrt 0xf.fffffp+124 0xe.7e0c2p+116
|
|
csqrt -0x4.15ca1p+0 -0x8p-152
|
|
csqrt 0xf.a24adp+28 0x8.0f148p+36
|
|
csqrt 0x1.f9610ap+4 0x9.87716p+4
|
|
csqrt 0x5.9cc21p-4 -0x1.fb1ec91b40dcdp+0
|
|
csqrt -0x7.31291c9fdae04p-160 -0x8p-152
|
|
csqrt 0x1.d60caep+0 0x7.a7d468p+0
|
|
csqrt -0xb.e2bc1cd6eaa7p-180 0x8p-152
|
|
csqrt 0xd.25d559ac5baap-168 0x8p-152
|
|
csqrt -0x9.0a61a7b482d28p-168 -0x8p-152
|
|
|
|
csqrt 0x1.fffffep+127 0x1.fffffep+127
|
|
csqrt 0x1.fffffep+127 1.0
|
|
csqrt 0x1p-149 0x1p-149
|
|
csqrt 0x1p-147 0x1p-147
|
|
|
|
csqrt 0 0x1p-149
|
|
csqrt 0x1p-50 0x1p-149
|
|
csqrt 0x1p+127 0x1p-149
|
|
csqrt 0x1p-149 0x1p+127
|
|
csqrt 0x1.000002p-126 0x1.000002p-126
|
|
csqrt -0x1.000002p-126 -0x1.000002p-126
|
|
|
|
csqrt 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
csqrt 0x1.fffffffffffffp+1023 0x1p+1023
|
|
csqrt 0x1p-1074 0x1p-1074
|
|
csqrt 0x1p-1073 0x1p-1073
|
|
|
|
csqrt 0 0x1p-1074
|
|
csqrt 0x1p-500 0x1p-1074
|
|
csqrt 0x1p+1023 0x1p-1074
|
|
csqrt 0x1p-1074 0x1p+1023
|
|
csqrt 0x1.0000000000001p-1022 0x1.0000000000001p-1022
|
|
csqrt -0x1.0000000000001p-1022 -0x1.0000000000001p-1022
|
|
|
|
csqrt 0x1.fp+16383 0x1.fp+16383
|
|
csqrt 0x1.fp+16383 0x1p+16383
|
|
csqrt 0x1p-16440 0x1p-16441
|
|
|
|
csqrt 0 0x1p-16445
|
|
csqrt 0x1p-5000 0x1p-16445
|
|
csqrt 0x1p+16383 0x1p-16445
|
|
csqrt 0x1p-16445 0x1p+16383
|
|
csqrt 0x1.0000000000000002p-16382 0x1.0000000000000002p-16382
|
|
csqrt -0x1.0000000000000002p-16382 -0x1.0000000000000002p-16382
|
|
|
|
csqrt 0 0x1p-16494
|
|
csqrt 0x1p-5000 0x1p-16494
|
|
csqrt 0x1p+16383 0x1p-16494
|
|
csqrt 0x1p-16494 0x1p+16383
|
|
csqrt 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-16382
|
|
csqrt -0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-16382
|
|
|
|
csqrt 0x0.ffp128 0x1.1p-61
|
|
csqrt -0x0.ffp128 0x1.1p-61
|
|
csqrt 0x0.ffp1024 0x1.1p-509
|
|
csqrt -0x0.ffp1024 0x1.1p-509
|
|
csqrt 0x0.ffp16384 0x1.1p-8189
|
|
csqrt -0x0.ffp16384 0x1.1p-8189
|
|
|
|
ctan 0 0
|
|
ctan 0 -0
|
|
ctan -0 0
|
|
ctan -0 -0
|
|
|
|
ctan 0.75 1.25
|
|
ctan -2 -3
|
|
|
|
ctan 1 45
|
|
ctan 1 47
|
|
ctan 1 355
|
|
ctan 1 365
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctan 1 5680 xfail-rounding:ldbl-128ibm
|
|
ctan 1 5690 xfail-rounding:ldbl-128ibm
|
|
|
|
ctan 0x3.243f6cp-1 0
|
|
|
|
ctan 0x1p127 1
|
|
ctan 0x1p1023 1
|
|
ctan 0x1p16383 1
|
|
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctan 50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctan 50000 -50000 xfail-rounding:ldbl-128ibm
|
|
ctan -50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctan -50000 -50000 xfail-rounding:ldbl-128ibm
|
|
|
|
ctan 0x1.921fb6p+0 0x1p-149
|
|
ctan 0x1.921fb54442d18p+0 0x1p-1074
|
|
ctan 0x1.921fb54442d1846ap+0 0x1p-16445
|
|
|
|
# Bug 18595: underflow exception may be missing
|
|
ctan min 0 missing-underflow
|
|
ctan -min 0 missing-underflow
|
|
ctan min_subnorm 0 missing-underflow
|
|
ctan -min_subnorm 0 missing-underflow
|
|
|
|
ctanh 0 0
|
|
ctanh 0 -0
|
|
ctanh -0 0
|
|
ctanh -0 -0
|
|
|
|
ctanh 0 pi/4
|
|
|
|
ctanh 0.75 1.25
|
|
ctanh -2 -3
|
|
|
|
ctanh 45 1
|
|
ctanh 47 1
|
|
ctanh 355 1
|
|
ctanh 365 1
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctanh 5680 1 xfail-rounding:ldbl-128ibm
|
|
ctanh 5690 1 xfail-rounding:ldbl-128ibm
|
|
|
|
ctanh 0 0x3.243f6cp-1
|
|
|
|
ctanh 1 0x1p127
|
|
ctanh 1 0x1p1023
|
|
ctanh 1 0x1p16383
|
|
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
ctanh 50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctanh 50000 -50000 xfail-rounding:ldbl-128ibm
|
|
ctanh -50000 50000 xfail-rounding:ldbl-128ibm
|
|
ctanh -50000 -50000 xfail-rounding:ldbl-128ibm
|
|
|
|
ctanh 0x1p-149 0x1.921fb6p+0
|
|
ctanh 0x1p-1074 0x1.921fb54442d18p+0
|
|
ctanh 0x1p-16445 0x1.921fb54442d1846ap+0
|
|
|
|
# Bug 18595: underflow exception may be missing
|
|
ctanh 0 min missing-underflow
|
|
ctanh 0 -min missing-underflow
|
|
ctanh 0 min_subnorm missing-underflow
|
|
ctanh 0 -min_subnorm missing-underflow
|
|
|
|
erf 0
|
|
erf -0
|
|
erf 0.125
|
|
erf 0.75
|
|
erf 1.25
|
|
erf 2.0
|
|
erf 4.125
|
|
erf 27.0
|
|
erf -27.0
|
|
erf -0x1.fffffffffffff8p-2
|
|
erf 0x1.c5bf94p-127
|
|
erf 0x3.8b7fa8p-128
|
|
erf -0x3.8b7f12369ded8p-1024
|
|
erf 0x3.8b7f12369ded5518p-16384
|
|
erf 26.0
|
|
erf 28.0
|
|
erf 100
|
|
erf 106
|
|
erf 106.5
|
|
erf 106.625
|
|
erf 107
|
|
erf 108
|
|
erf 1000
|
|
erf max
|
|
|
|
erf -0x1.ddaea4p+0
|
|
erf -0x1.2b1f68p+0
|
|
erf 0x1.44e722p+0
|
|
erf -0x1.3a0d48p+0
|
|
|
|
erfc 0.0
|
|
erfc -0
|
|
erfc 0x1p-55
|
|
erfc -0x1p-55
|
|
erfc 0.125
|
|
erfc 0.75
|
|
erfc 1.25
|
|
erfc 2.0
|
|
erfc 0x1.f7303cp+1
|
|
erfc 4.125
|
|
erfc 0x1.ffa002p+2
|
|
erfc 0x1.ffffc8p+2
|
|
erfc -0x1.fffffffffffff8p-2
|
|
erfc 26.0
|
|
erfc 27.0
|
|
erfc 28.0
|
|
erfc 0x1.ffff56789abcdef0123456789a8p+2
|
|
erfc 100
|
|
erfc 106
|
|
erfc 106.5
|
|
erfc 106.625
|
|
erfc 107
|
|
erfc 108
|
|
erfc 1000
|
|
erfc max
|
|
|
|
erfc 0x1.8a0c64p+0
|
|
erfc 0x1.8a0c62p+0
|
|
erfc 0x1.64dafap+0
|
|
erfc 0x6.88fb08p+0
|
|
erfc 0xd.361d9p-4
|
|
erfc 0x8.c66b44ca40038p+0
|
|
erfc 0x2.586f1cp+0
|
|
erfc 0xb.acb72p+0
|
|
erfc 0xb.227499103357d84p+0
|
|
erfc 0xd.28abfp-4
|
|
erfc 0x1.5289fep+0
|
|
erfc 0x4.b48498p+0
|
|
erfc 0x2.f8646cp+0
|
|
erfc 0x1.514548p+0
|
|
|
|
exp 0
|
|
exp -0
|
|
exp 1
|
|
exp 2
|
|
exp 3
|
|
exp 0.75
|
|
exp 50.0
|
|
exp 88.72269439697265625
|
|
exp 709.75
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp 1000.0 xfail-rounding:ldbl-128ibm
|
|
exp 710 xfail-rounding:ldbl-128ibm
|
|
exp -1234
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp 0x2.c679d1f73f0fb628p+8 xfail-rounding:ldbl-128ibm
|
|
exp 1e5 xfail-rounding:ldbl-128ibm
|
|
exp max xfail-rounding:ldbl-128ibm
|
|
exp -7.4444006192138124e+02
|
|
exp -0x1.75f113c30b1c8p+9
|
|
exp -max
|
|
exp -11342.8125
|
|
exp -0x2.c5b2319c4843acc0p12
|
|
exp 0x1p-10
|
|
exp -0x1p-10
|
|
exp 0x1p-20
|
|
exp -0x1p-20
|
|
exp 0x1p-30
|
|
exp -0x1p-30
|
|
exp 0x1p-40
|
|
exp -0x1p-40
|
|
exp 0x1p-50
|
|
exp -0x1p-50
|
|
exp 0x1p-60
|
|
exp -0x1p-60
|
|
exp 0x1p-100
|
|
exp -0x1p-100
|
|
exp min
|
|
exp -min
|
|
exp min_subnorm
|
|
exp -min_subnorm
|
|
|
|
exp -0x1.760cd14774bd9p+0
|
|
exp 0x1.4bed28p+0
|
|
|
|
exp10 0
|
|
exp10 -0
|
|
exp10 3
|
|
exp10 -1
|
|
exp10 36
|
|
exp10 -36
|
|
exp10 305
|
|
exp10 -305
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 4932 xfail-rounding:ldbl-128ibm
|
|
exp10 -4932
|
|
exp10 -0x1.343793004f503232p12
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 1e5 xfail-rounding:ldbl-128ibm
|
|
exp10 -1e5
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 1e6 xfail-rounding:ldbl-128ibm
|
|
exp10 -1e6
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 max xfail-rounding:ldbl-128ibm
|
|
exp10 -max
|
|
exp10 0.75
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
exp10 0x1.348e45573a1dd72cp+8 xfail-rounding:ldbl-128ibm
|
|
exp10 0x1p-10
|
|
exp10 -0x1p-10
|
|
exp10 0x1p-20
|
|
exp10 -0x1p-20
|
|
exp10 0x1p-30
|
|
exp10 -0x1p-30
|
|
exp10 0x1p-40
|
|
exp10 -0x1p-40
|
|
exp10 0x1p-50
|
|
exp10 -0x1p-50
|
|
exp10 0x1p-60
|
|
exp10 -0x1p-60
|
|
exp10 0x1p-100
|
|
exp10 -0x1p-100
|
|
exp10 min
|
|
exp10 -min
|
|
exp10 min_subnorm
|
|
exp10 -min_subnorm
|
|
|
|
exp10 0xd.f73d6p-4
|
|
exp10 0x1.cc6776p+0
|
|
exp10 0x5.b00bcd891ffe56fp+0
|
|
|
|
exp2 0
|
|
exp2 -0
|
|
exp2 10
|
|
exp2 -1
|
|
exp2 1e6
|
|
exp2 -1e6
|
|
exp2 max
|
|
exp2 -max
|
|
exp2 0.75
|
|
exp2 100.5
|
|
exp2 -116.5
|
|
exp2 -123.5
|
|
exp2 -124.5
|
|
exp2 -125.5
|
|
exp2 127
|
|
exp2 -149
|
|
exp2 1000.25
|
|
exp2 -1019.5
|
|
exp2 -1020.5
|
|
exp2 -1021.5
|
|
exp2 1023
|
|
exp2 -1074
|
|
exp2 16383
|
|
exp2 -16400
|
|
exp2 0x1p-10
|
|
exp2 -0x1p-10
|
|
exp2 0x1p-20
|
|
exp2 -0x1p-20
|
|
exp2 0x1p-30
|
|
exp2 -0x1p-30
|
|
exp2 0x1p-40
|
|
exp2 -0x1p-40
|
|
exp2 0x1p-50
|
|
exp2 -0x1p-50
|
|
exp2 0x1p-60
|
|
exp2 -0x1p-60
|
|
exp2 0x1p-100
|
|
exp2 -0x1p-100
|
|
exp2 min
|
|
exp2 -min
|
|
exp2 min_subnorm
|
|
exp2 -min_subnorm
|
|
|
|
exp2 0xb.71754p-4
|
|
exp2 0xd.d77dp+0
|
|
exp2 0xc.122c4p-4
|
|
exp2 -0x1.567cc8p+0
|
|
exp2 -0x1.bbbd76p+0
|
|
exp2 -0x1.3045fep+8
|
|
exp2 0xa.87b8bp+0
|
|
exp2 -0xe.2ce69p-4
|
|
exp2 -0xc.1bf12p-16
|
|
|
|
expm1 0
|
|
expm1 -0
|
|
expm1 1
|
|
expm1 0.75
|
|
expm1 50.0
|
|
expm1 127.0
|
|
expm1 500.0
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
expm1 11356.25 xfail-rounding:ldbl-128ibm
|
|
expm1 -10.0
|
|
expm1 -16.0
|
|
expm1 -17.0
|
|
expm1 -18.0
|
|
expm1 -36.0
|
|
expm1 -37.0
|
|
expm1 -38.0
|
|
expm1 -44.0
|
|
expm1 -45.0
|
|
expm1 -46.0
|
|
expm1 -73.0
|
|
expm1 -74.0
|
|
expm1 -75.0
|
|
expm1 -78.0
|
|
expm1 -79.0
|
|
expm1 -80.0
|
|
expm1 -100.0
|
|
expm1 -1000.0
|
|
expm1 -10000.0
|
|
expm1 -100000.0
|
|
# GCC bug 59666: results on directed rounding may be incorrect.
|
|
expm1 100000.0 xfail-rounding:ldbl-128ibm
|
|
expm1 max xfail-rounding:ldbl-128ibm
|
|
expm1 -max
|
|
expm1 0x1p-2
|
|
expm1 -0x1p-2
|
|
expm1 0x1p-10
|
|
expm1 -0x1p-10
|
|
expm1 0x1p-20
|
|
expm1 -0x1p-20
|
|
expm1 0x1p-29
|
|
expm1 -0x1p-29
|
|
expm1 0x1p-32
|
|
expm1 -0x1p-32
|
|
expm1 0x1p-50
|
|
expm1 -0x1p-50
|
|
expm1 0x1p-64
|
|
expm1 -0x1p-64
|
|
expm1 0x1p-100
|
|
expm1 -0x1p-100
|
|
expm1 0xe.4152ac57cd1ea7ap-60
|
|
expm1 0x6.660247486aed8p-4
|
|
expm1 0x6.289a78p-4
|
|
expm1 0x6.1b4d318238d4a2a8p-4
|
|
expm1 0x5.fb8dc64e91a74p-4
|
|
expm1 0x3.735f497c4e67535cp-4
|
|
expm1 0x4.0000000000000028p-16384
|
|
expm1 min
|
|
expm1 -min
|
|
expm1 min_subnorm
|
|
expm1 -min_subnorm
|
|
|
|
fma 1.0 2.0 3.0
|
|
fma 1.25 0.75 0.0625
|
|
|
|
fma 0 0 0
|
|
fma 0 0 -0
|
|
fma 0 -0 0
|
|
fma 0 -0 -0
|
|
fma -0 0 0
|
|
fma -0 0 -0
|
|
fma -0 -0 0
|
|
fma -0 -0 -0
|
|
fma 1.0 0 0
|
|
fma 1.0 0 -0
|
|
fma 1.0 -0 0
|
|
fma 1.0 -0 -0
|
|
fma -1.0 0 0
|
|
fma -1.0 0 -0
|
|
fma -1.0 -0 0
|
|
fma -1.0 -0 -0
|
|
fma 0 1.0 0
|
|
fma 0 1.0 -0
|
|
fma 0 -1.0 0
|
|
fma 0 -1.0 -0
|
|
fma -0 1.0 0
|
|
fma -0 1.0 -0
|
|
fma -0 -1.0 0
|
|
fma -0 -1.0 -0
|
|
|
|
fma 1.0 1.0 -1.0
|
|
fma 1.0 -1.0 1.0
|
|
fma -1.0 1.0 1.0
|
|
fma -1.0 -1.0 -1.0
|
|
|
|
fma 0 0 1
|
|
fma 0 0 2
|
|
fma 0 0 max
|
|
fma 0 1 1
|
|
fma 1 0 1
|
|
fma 0 1 2
|
|
fma 1 0 2
|
|
fma 0 1 max
|
|
fma 1 0 max
|
|
|
|
# Bug 6801: errno setting may be missing.
|
|
fma min min 0 missing-errno
|
|
fma min min -0 missing-errno
|
|
fma min -min 0 missing-errno
|
|
fma min -min -0 missing-errno
|
|
fma -min min 0 missing-errno
|
|
fma -min min -0 missing-errno
|
|
fma -min -min 0 missing-errno
|
|
fma -min -min -0 missing-errno
|
|
|
|
# Bug 6801: errno setting may be missing.
|
|
# Bug 13304: results on directed rounding may be incorrect.
|
|
fma max max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma max max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma max -max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma max -max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max -max min missing-errno xfail-rounding:ldbl-128ibm
|
|
fma -max -max -min missing-errno xfail-rounding:ldbl-128ibm
|
|
|
|
fma 0x1.7ff8p+13 0x1.000002p+0 0x1.ffffp-24
|
|
fma 0x1.fffp+0 0x1.00001p+0 -0x1.fffp+0
|
|
fma 0x1.9abcdep+127 0x0.9abcdep-126 -0x1.f08948p+0
|
|
fma 0x1.9abcdep+100 0x0.9abcdep-126 -0x1.f08948p-27
|
|
fma 0x1.fffffep+127 0x1.001p+0 -0x1.fffffep+127
|
|
fma -0x1.fffffep+127 0x1.fffffep+0 0x1.fffffep+127
|
|
fma 0x1.fffffep+127 2.0 -0x1.fffffep+127
|
|
fma 0x1.4p-126 0x1.000004p-1 0x1p-128
|
|
fma -0x1.4p-126 0x1.000004p-1 -0x1p-128
|
|
fma 0x1.fffff8p-126 0x1.000002p-1 0x1p-149
|
|
fma -0x1.fffff8p-126 0x1.000002p-1 -0x1p-149
|
|
fma 0x1p-149 0x1p-1 0x0.fffffep-126
|
|
fma -0x1p-149 0x1p-1 -0x0.fffffep-126
|
|
fma 0x1p-149 0x1.1p-1 0x0.fffffep-126
|
|
fma -0x1p-149 0x1.1p-1 -0x0.fffffep-126
|
|
fma 0x1p-149 0x1p-149 0x1p127
|
|
fma 0x1p-149 -0x1p-149 0x1p127
|
|
fma 0x1p-149 0x1p-149 -0x1p127
|
|
fma 0x1p-149 -0x1p-149 -0x1p127
|
|
fma 0x1p-149 0x1p-149 0x1p-126
|
|
fma 0x1p-149 -0x1p-149 0x1p-126
|
|
fma 0x1p-149 0x1p-149 -0x1p-126
|
|
fma 0x1p-149 -0x1p-149 -0x1p-126
|
|
fma 0x1p-149 0x1p-149 0x0.fffffep-126
|
|
fma 0x1p-149 -0x1p-149 0x0.fffffep-126
|
|
fma 0x1p-149 0x1p-149 -0x0.fffffep-126
|
|
fma 0x1p-149 -0x1p-149 -0x0.fffffep-126
|
|
fma 0x1p-149 0x1p-149 0x1p-149
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-149 -0x1p-149 0x1p-149 missing-errno
|
|
fma 0x1p-149 0x1p-149 -0x1p-149 missing-errno
|
|
fma 0x1p-149 -0x1p-149 -0x1p-149
|
|
fma 0x0.fffp0 0x0.fffp0 -0x0.ffep0
|
|
fma 0x0.fffp0 -0x0.fffp0 0x0.ffep0
|
|
fma -0x0.fffp0 0x0.fffp0 0x0.ffep0
|
|
fma -0x0.fffp0 -0x0.fffp0 -0x0.ffep0
|
|
fma 0x1.000002p-126 0x1.000002p-26 0x1p127
|
|
fma 0x1.000002p-126 -0x1.000002p-26 0x1p127
|
|
fma 0x1.000002p-126 0x1.000002p-26 -0x1p127
|
|
fma 0x1.000002p-126 -0x1.000002p-26 -0x1p127
|
|
fma 0x1.000002p-126 0x1.000002p-26 0x1p103
|
|
fma 0x1.000002p-126 -0x1.000002p-26 0x1p103
|
|
fma 0x1.000002p-126 0x1.000002p-26 -0x1p103
|
|
fma 0x1.000002p-126 -0x1.000002p-26 -0x1p103
|
|
|
|
fma 0x1.7fp+13 0x1.0000000000001p+0 0x1.ffep-48
|
|
fma 0x1.fffp+0 0x1.0000000000001p+0 -0x1.fffp+0
|
|
fma 0x1.0000002p+0 0x1.ffffffcp-1 0x1p-300
|
|
fma 0x1.0000002p+0 0x1.ffffffcp-1 -0x1p-300
|
|
fma 0x1.deadbeef2feedp+1023 0x0.deadbeef2feedp-1022 -0x1.a05f8c01a4bfbp+1
|
|
fma 0x1.deadbeef2feedp+900 0x0.deadbeef2feedp-1022 -0x1.a05f8c01a4bfbp-122
|
|
fma 0x1.fffffffffffffp+1023 0x1.001p+0 -0x1.fffffffffffffp+1023
|
|
fma -0x1.fffffffffffffp+1023 0x1.fffffffffffffp+0 0x1.fffffffffffffp+1023
|
|
fma 0x1.fffffffffffffp+1023 2.0 -0x1.fffffffffffffp+1023
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1.6a09e667f3bccp-538 0x1.6a09e667f3bccp-538 0.0 missing-errno
|
|
fma 0x1.deadbeef2feedp-495 0x1.deadbeef2feedp-495 -0x1.bf86a5786a574p-989
|
|
fma 0x1.deadbeef2feedp-503 0x1.deadbeef2feedp-503 -0x1.bf86a5786a574p-1005
|
|
fma 0x1p-537 0x1p-538 0x1p-1074
|
|
fma 0x1.7fffff8p-968 0x1p-106 0x0.000001p-1022
|
|
fma 0x1.4000004p-967 0x1p-106 0x0.000001p-1022
|
|
fma 0x1.4p-967 -0x1p-106 -0x0.000001p-1022
|
|
fma -0x1.19cab66d73e17p-959 0x1.c7108a8c5ff51p-107 -0x0.80b0ad65d9b64p-1022
|
|
fma -0x1.d2eaed6e8e9d3p-979 -0x1.4e066c62ac9ddp-63 -0x0.9245e6b003454p-1022
|
|
fma 0x1.153d650bb9f06p-907 0x1.2d01230d48407p-125 -0x0.b278d5acfc3cp-1022
|
|
fma -0x1.fffffffffffffp-711 0x1.fffffffffffffp-275 0x1.fffffe00007ffp-983
|
|
fma 0x1.4p-1022 0x1.0000000000002p-1 0x1p-1024
|
|
fma -0x1.4p-1022 0x1.0000000000002p-1 -0x1p-1024
|
|
fma 0x1.ffffffffffffcp-1022 0x1.0000000000001p-1 0x1p-1074
|
|
fma -0x1.ffffffffffffcp-1022 0x1.0000000000001p-1 -0x1p-1074
|
|
fma 0x1p-1074 0x1p-1 0x0.fffffffffffffp-1022
|
|
fma -0x1p-1074 0x1p-1 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1.1p-1 0x0.fffffffffffffp-1022
|
|
fma -0x1p-1074 0x1.1p-1 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1p-1074 0x1p1023
|
|
fma 0x1p-1074 -0x1p-1074 0x1p1023
|
|
fma 0x1p-1074 0x1p-1074 -0x1p1023
|
|
fma 0x1p-1074 -0x1p-1074 -0x1p1023
|
|
fma 0x1p-1074 0x1p-1074 0x1p-1022
|
|
fma 0x1p-1074 -0x1p-1074 0x1p-1022
|
|
fma 0x1p-1074 0x1p-1074 -0x1p-1022
|
|
fma 0x1p-1074 -0x1p-1074 -0x1p-1022
|
|
fma 0x1p-1074 0x1p-1074 0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 -0x1p-1074 0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1p-1074 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 -0x1p-1074 -0x0.fffffffffffffp-1022
|
|
fma 0x1p-1074 0x1p-1074 0x1p-1074
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-1074 -0x1p-1074 0x1p-1074 missing-errno
|
|
fma 0x1p-1074 0x1p-1074 -0x1p-1074 missing-errno
|
|
fma 0x1p-1074 -0x1p-1074 -0x1p-1074
|
|
fma 0x0.fffffffffffff8p0 0x0.fffffffffffff8p0 -0x0.fffffffffffffp0
|
|
fma 0x0.fffffffffffff8p0 -0x0.fffffffffffff8p0 0x0.fffffffffffffp0
|
|
fma -0x0.fffffffffffff8p0 0x0.fffffffffffff8p0 0x0.fffffffffffffp0
|
|
fma -0x0.fffffffffffff8p0 -0x0.fffffffffffff8p0 -0x0.fffffffffffffp0
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 0x1p1023
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 0x1p1023
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 -0x1p1023
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 -0x1p1023
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 0x1p970
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 0x1p970
|
|
fma 0x1.0000000000001p-1022 0x1.0000000000001p-55 -0x1p970
|
|
fma 0x1.0000000000001p-1022 -0x1.0000000000001p-55 -0x1p970
|
|
|
|
fma -0x8.03fcp+3696 0xf.fffffffffffffffp-6140 0x8.3ffffffffffffffp-2450
|
|
fma 0x9.fcp+2033 -0x8.000e1f000ff800fp-3613 -0xf.fffffffffffc0ffp-1579
|
|
fma 0xc.7fc000003ffffffp-1194 0x8.1e0003fffffffffp+15327 -0x8.fffep+14072
|
|
fma -0x8.0001fc000000003p+1798 0xcp-2230 0x8.f7e000000000007p-468
|
|
fma 0xc.0000000000007ffp+10130 -0x8.000000000000001p+4430 0xc.07000000001ffffp+14513
|
|
fma 0xb.ffffp-4777 0x8.000000fffffffffp-11612 -0x0.3800fff8p-16385
|
|
fma 0x1.4p-16382 0x1.0000000000000004p-1 0x1p-16384
|
|
fma -0x1.4p-16382 0x1.0000000000000004p-1 -0x1p-16384
|
|
fma 0x1.fffffffffffffff8p-16382 0x1.0000000000000002p-1 0x1p-16445
|
|
fma -0x1.fffffffffffffff8p-16382 0x1.0000000000000002p-1 -0x1p-16445
|
|
fma 0x1p-16445 0x1p-1 0x0.fffffffffffffffep-16382
|
|
fma -0x1p-16445 0x1p-1 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1.1p-1 0x0.fffffffffffffffep-16382
|
|
fma -0x1p-16445 0x1.1p-1 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1p-16445 0x1p16383
|
|
fma 0x1p-16445 -0x1p-16445 0x1p16383
|
|
fma 0x1p-16445 0x1p-16445 -0x1p16383
|
|
fma 0x1p-16445 -0x1p-16445 -0x1p16383
|
|
fma 0x1p-16445 0x1p-16445 0x1p-16382
|
|
fma 0x1p-16445 -0x1p-16445 0x1p-16382
|
|
fma 0x1p-16445 0x1p-16445 -0x1p-16382
|
|
fma 0x1p-16445 -0x1p-16445 -0x1p-16382
|
|
fma 0x1p-16445 0x1p-16445 0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 -0x1p-16445 0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1p-16445 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 -0x1p-16445 -0x0.fffffffffffffffep-16382
|
|
fma 0x1p-16445 0x1p-16445 0x1p-16445
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-16445 -0x1p-16445 0x1p-16445 missing-errno
|
|
fma 0x1p-16445 0x1p-16445 -0x1p-16445 missing-errno
|
|
fma 0x1p-16445 -0x1p-16445 -0x1p-16445
|
|
fma 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp0 -0x0.fffffffffffffffep0
|
|
fma 0x0.ffffffffffffffffp0 -0x0.ffffffffffffffffp0 0x0.fffffffffffffffep0
|
|
fma -0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp0 0x0.fffffffffffffffep0
|
|
fma -0x0.ffffffffffffffffp0 -0x0.ffffffffffffffffp0 -0x0.fffffffffffffffep0
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 0x1p16383
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 0x1p16383
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 -0x1p16383
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 -0x1p16383
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 0x1p16319
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 0x1p16319
|
|
fma 0x1.0000000000000002p-16382 0x1.0000000000000002p-66 -0x1p16319
|
|
fma 0x1.0000000000000002p-16382 -0x1.0000000000000002p-66 -0x1p16319
|
|
|
|
fma 0x1.bb2de33e02ccbbfa6e245a7c1f71p-2584 -0x1.6b500daf0580d987f1bc0cadfcddp-13777 0x1.613cd91d9fed34b33820e5ab9d8dp-16378
|
|
fma -0x1.f949b880cacb0f0c61540105321dp-5954 -0x1.3876cec84b4140f3bd6198731b7ep-10525 -0x0.a5dc1c6cfbc498c54fb0b504bf19p-16382
|
|
fma -0x1.0000fffffffffp-16221 0x1.0000001fffff8007fep-239 0x0.ff87ffffffffffffe000003fffffp-16382
|
|
fma -0x1.ac79c9376ef447f3827c9e9de008p-2228 -0x1.5ba830022b6139e21fbe7270cad8p-6314 0x1.e8282b6a26bb6a9daf5c8e73e9f9p-8616
|
|
fma -0x1.c69749ec574caaa2ab8e97ddb9f3p+2652 0x1.f34235ff9d095449c29b4831b62dp+3311 0x1.fbe4302df23354dbd0c4d3cfe606p+5879
|
|
fma -0x1.ca8835fc6ecfb5398625fc891be5p-1686 0x1.621e1972bbe2180e5be9dd7d8df5p-7671 -0x1.7d2d21b73b52cf20dec2a83902a4p-9395
|
|
fma -0x1.55cff679ec49c2541fab41fc843ep-11819 0x1.e60e9f464f9e8df0509647c7c971p+12325 0x1.eaa2a7649d765c2f564f7a5beca7p+454
|
|
fma 0x1.f0e7b1454908576f2537d863cf9bp+11432 0x1.cdce52f09d4ca76e68706f34b5d5p-1417 -0x1.2e986187c70f146235ea2066e486p+9979
|
|
fma 0x1.f102f7da4a57a3a4aab620e29452p-3098 -0x1.cc06a4ff40248f9e2dcc4b6afd84p-11727 0x1.d512a11126b5ac8ed8973b8580c8p-14849
|
|
fma -0x1.fc47ac7434b993cd8dcb2b431f25p-3816 0x1.fbc9750da8468852d84558e1db6dp-5773 -0x1.00a98abf783f75c40fe5b7a37d86p-9607
|
|
fma 0x1.00000000000007ffffffffffffffp-9045 -0x1.ffffffffffff80000001ffffffffp+4773 -0x1.f8p-4316
|
|
fma 0x1.4e922764c90701d4a2f21d01893dp-8683 -0x1.955a12e2d7c9447c27fa022fc865p+212 -0x1.e9634462eaef96528b90b6944578p-8521
|
|
fma 0x1.801181509c03bdbef10d6165588cp-15131 0x1.ad86f8e57d3d40bfa8007780af63p-368 -0x1.6e9df0dab1c9f1d7a6043c390741p-15507
|
|
fma 0x1.ffffffffffffffp0 0x1.000000000000008p0 -0x1p-1000
|
|
fma 0x1.4p-16382 0x1.0000000000000000000000000002p-1 0x1p-16384
|
|
fma -0x1.4p-16382 0x1.0000000000000000000000000002p-1 -0x1p-16384
|
|
fma 0x1.fffffffffffffffffffffffffffcp-16382 0x1.0000000000000000000000000001p-1 0x1p-16494
|
|
fma -0x1.fffffffffffffffffffffffffffcp-16382 0x1.0000000000000000000000000001p-1 -0x1p-16494
|
|
fma 0x1p-16494 0x1p-1 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma -0x1p-16494 0x1p-1 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1.1p-1 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma -0x1p-16494 0x1.1p-1 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1p-16494 0x1p16383
|
|
fma 0x1p-16494 -0x1p-16494 0x1p16383
|
|
fma 0x1p-16494 0x1p-16494 -0x1p16383
|
|
fma 0x1p-16494 -0x1p-16494 -0x1p16383
|
|
fma 0x1p-16494 0x1p-16494 0x1p-16382
|
|
fma 0x1p-16494 -0x1p-16494 0x1p-16382
|
|
fma 0x1p-16494 0x1p-16494 -0x1p-16382
|
|
fma 0x1p-16494 -0x1p-16494 -0x1p-16382
|
|
fma 0x1p-16494 0x1p-16494 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 -0x1p-16494 0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1p-16494 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 -0x1p-16494 -0x0.ffffffffffffffffffffffffffffp-16382
|
|
fma 0x1p-16494 0x1p-16494 0x1p-16494
|
|
# Bug 6801: errno setting may be missing.
|
|
fma 0x1p-16494 -0x1p-16494 0x1p-16494 missing-errno
|
|
fma 0x1p-16494 0x1p-16494 -0x1p-16494 missing-errno
|
|
fma 0x1p-16494 -0x1p-16494 -0x1p-16494
|
|
fma 0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffffp0
|
|
fma 0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffffp0
|
|
fma -0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffff8p0 0x0.ffffffffffffffffffffffffffffp0
|
|
fma -0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffff8p0 -0x0.ffffffffffffffffffffffffffffp0
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 -0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 -0x1p16383
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 0x1p16319
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 0x1p16319
|
|
fma 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-66 -0x1p16319
|
|
fma 0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-66 -0x1p16319
|
|
|
|
hypot 0 0
|
|
hypot 0 -0
|
|
hypot -0 0
|
|
hypot -0 -0
|
|
# hypot (x,y) == hypot (+-x, +-y).
|
|
hypot 0.7 12.4
|
|
hypot -0.7 12.4
|
|
hypot 0.7 -12.4
|
|
hypot -0.7 -12.4
|
|
hypot 12.4 0.7
|
|
hypot -12.4 0.7
|
|
hypot 12.4 -0.7
|
|
hypot -12.4 -0.7
|
|
# hypot (x,0) == fabs (x).
|
|
hypot 0.75 0
|
|
hypot -0.75 0
|
|
hypot -5.7e7 0
|
|
hypot 0.75 1.25
|
|
hypot 1.0 0x1p-61
|
|
hypot 0x1p+0 0x1.fp-129
|
|
hypot 0x1.23456789abcdef0123456789ab8p-500 0x1.23456789abcdef0123456789ab8p-500
|
|
hypot 0x3p125 0x4p125 no-test-inline:flt-32
|
|
hypot 0x1.234566p-126 0x1.234566p-126 no-test-inline:flt-32
|
|
hypot 0x3p1021 0x4p1021 no-test-inline:dbl-64
|
|
hypot 0x1p+0 0x0.3ep-1022 no-test-inline:dbl-64
|
|
hypot 0x3p16381 0x4p16381 no-test-inline
|
|
hypot 0x1p-149 0x1p-149
|
|
hypot 0x1p-1074 0x1p-1074
|
|
hypot 0x1p-16445 0x1p-16445 no-test-inline
|
|
hypot 0x1p-16494 0x1p-16494 no-test-inline
|
|
hypot 0x0.fffffep-126 0x0.fp-127
|
|
hypot 0x0.fffffep-126 0x0.fp-130
|
|
hypot 0x0.fffffffffffffp-1022 0x0.fp-1023
|
|
hypot 0x0.fffffffffffffp-1022 0x0.fp-1026
|
|
hypot 0x0.ffffffp-16382 0x0.fp-16383 no-test-inline
|
|
hypot 0x0.ffffffp-16382 0x0.fp-16386 no-test-inline
|
|
hypot 0 min_subnorm no-test-inline
|
|
|
|
j0 -1.0
|
|
j0 0.0
|
|
j0 0.125
|
|
j0 0.75
|
|
j0 1.0
|
|
j0 1.5
|
|
j0 2.0
|
|
j0 8.0
|
|
j0 10.0
|
|
j0 4.0
|
|
j0 -4.0
|
|
j0 0x1.d7ce3ap+107
|
|
j0 -0x1.001000001p+593
|
|
j0 0x1p1023
|
|
j0 0x1p16382
|
|
j0 0x1p16383
|
|
|
|
j1 -1.0
|
|
j1 0.0
|
|
j1 0.125
|
|
j1 0.75
|
|
j1 1.0
|
|
j1 1.5
|
|
j1 2.0
|
|
j1 8.0
|
|
j1 10.0
|
|
j1 0x1.3ffp+74
|
|
j1 0x1.ff00000000002p+840
|
|
j1 0x1p1023
|
|
j1 0x1p16382
|
|
j1 0x1p16383
|
|
j1 0x1p-100
|
|
j1 0x1p-600
|
|
j1 0x1p-10000
|
|
# Bug 18611: errno setting may be missing.
|
|
j1 min missing-errno
|
|
j1 -min missing-errno
|
|
j1 min_subnorm missing-errno
|
|
j1 -min_subnorm missing-errno
|
|
|
|
# jn (0, x) == j0 (x).
|
|
jn 0 -1.0
|
|
jn 0 0.0
|
|
jn 0 0.125
|
|
jn 0 0.75
|
|
jn 0 1.0
|
|
jn 0 1.5
|
|
jn 0 2.0
|
|
jn 0 8.0
|
|
jn 0 10.0
|
|
jn 0 4.0
|
|
jn 0 -4.0
|
|
|
|
# jn (1, x) == j1 (x).
|
|
jn 1 -1.0
|
|
jn 1 0.0
|
|
jn 1 0.125
|
|
jn 1 0.75
|
|
jn 1 1.0
|
|
jn 1 1.5
|
|
jn 1 2.0
|
|
jn 1 8.0
|
|
jn 1 10.0
|
|
# Bug 18611: errno setting may be missing.
|
|
jn 1 min missing-errno
|
|
jn 1 -min missing-errno
|
|
jn 1 min_subnorm missing-errno
|
|
jn 1 -min_subnorm missing-errno
|
|
|
|
jn 3 -1.0
|
|
jn 3 0.0
|
|
jn 3 0.125
|
|
jn 3 0.75
|
|
jn 3 1.0
|
|
jn 3 2.0
|
|
jn 3 10.0
|
|
|
|
jn 10 -1.0
|
|
jn 10 0.0
|
|
jn 10 0.125
|
|
jn 10 0.75
|
|
jn 10 1.0
|
|
jn 10 2.0
|
|
jn 10 10.0
|
|
|
|
jn 2 2.4048255576957729
|
|
jn 3 2.4048255576957729
|
|
jn 4 2.4048255576957729
|
|
jn 5 2.4048255576957729
|
|
jn 6 2.4048255576957729
|
|
jn 7 2.4048255576957729
|
|
jn 8 2.4048255576957729
|
|
jn 9 2.4048255576957729
|
|
|
|
jn 2 0x1.ffff62p+99
|
|
jn 2 0x1p127
|
|
jn 2 0x1p1023
|
|
jn 2 0x1p16383
|
|
|
|
# Bug 18611: errno setting may be missing.
|
|
jn 10 min missing-errno
|
|
jn 10 -min missing-errno
|
|
jn 10 min_subnorm missing-errno
|
|
jn 10 -min_subnorm missing-errno
|
|
|
|
lgamma max
|
|
lgamma 1
|
|
lgamma 3
|
|
lgamma 0.5
|
|
lgamma -0.5
|
|
lgamma 0.7
|
|
lgamma 1.2
|
|
lgamma 0x3.8p56
|
|
lgamma 0x1p-5
|
|
lgamma -0x1p-5
|
|
lgamma 0x1p-10
|
|
lgamma -0x1p-10
|
|
lgamma 0x1p-15
|
|
lgamma -0x1p-15
|
|
lgamma 0x1p-20
|
|
lgamma -0x1p-20
|
|
lgamma 0x1p-25
|
|
lgamma -0x1p-25
|
|
lgamma 0x1p-30
|
|
lgamma -0x1p-30
|
|
lgamma 0x1p-40
|
|
lgamma -0x1p-40
|
|
lgamma 0x1p-50
|
|
lgamma -0x1p-50
|
|
lgamma 0x1p-60
|
|
lgamma -0x1p-60
|
|
lgamma 0x1p-64
|
|
lgamma -0x1p-64
|
|
lgamma 0x1p-70
|
|
lgamma -0x1p-70
|
|
lgamma 0x1p-100
|
|
lgamma -0x1p-100
|
|
lgamma 0x1p-126
|
|
lgamma -0x1p-126
|
|
lgamma 0x1p-149
|
|
lgamma -0x1p-149
|
|
lgamma 0x1p-200
|
|
lgamma -0x1p-200
|
|
lgamma 0x1p-500
|
|
lgamma -0x1p-500
|
|
lgamma 0x1p-1000
|
|
lgamma -0x1p-1000
|
|
lgamma 0x1p-1022
|
|
lgamma -0x1p-1022
|
|
lgamma 0x1p-1074
|
|
lgamma -0x1p-1074
|
|
lgamma 0x1p-5000
|
|
lgamma -0x1p-5000
|
|
lgamma 0x1p-10000
|
|
lgamma -0x1p-10000
|
|
lgamma 0x1p-16382
|
|
lgamma -0x1p-16382
|
|
lgamma 0x1p-16445
|
|
lgamma -0x1p-16445
|
|
lgamma 0x1p-16494
|
|
lgamma -0x1p-16494
|
|
|
|
lgamma 0x8.8d2d5p+0
|
|
lgamma 0x1.6a324ap+52
|
|
lgamma 0x9.62f59p+0
|
|
lgamma 0xa.d55d6b4d78e28p+0
|
|
lgamma 0x8.d6315p+0
|
|
lgamma 0xb.2e679p+0
|
|
lgamma 0xb.01191p+0
|
|
lgamma 0xb.26fdap+0
|
|
lgamma 0xb.4ad0ap+0
|
|
|
|
log 1
|
|
log e
|
|
log 1/e
|
|
log 2
|
|
log 10
|
|
log 0.75
|
|
log min
|
|
log min_subnorm
|
|
|
|
log 0xb.0d5dfp-4
|
|
log 0x1.6c3f6p+0
|
|
log 0xa.ae688p-4
|
|
log 0x1.017f8ap+44
|
|
|
|
log10 1
|
|
log10 0.1
|
|
log10 10.0
|
|
log10 100.0
|
|
log10 10000.0
|
|
log10 e
|
|
log10 0.75
|
|
log10 min
|
|
log10 min_subnorm
|
|
|
|
log10 0x9.ad6e3p-4
|
|
log10 0x1.7163aep+0
|
|
log10 0xa.9d0d4p-4
|
|
log10 0x1.251ec6p+0
|
|
log10 0x1.022e82p+0
|
|
log10 0x9.b3727e3feb538p-4
|
|
log10 0xf.bf1b2p-4
|
|
|
|
log1p 0
|
|
log1p -0
|
|
log1p e-1
|
|
log1p -0.25
|
|
log1p -0.875
|
|
log1p min
|
|
log1p min_subnorm
|
|
log1p -min
|
|
log1p -min_subnorm
|
|
log1p 0x1p10
|
|
log1p 0x1p20
|
|
log1p 0x1p30
|
|
log1p 0x1p50
|
|
log1p 0x1p60
|
|
log1p 0x1p100
|
|
log1p 0x1p1000
|
|
log1p max
|
|
|
|
log1p 0x7.2a4368p-4
|
|
log1p 0x6.d3a118p-4
|
|
log1p 0x5.03f228p+0
|
|
log1p 0x7.264963888ac9p-4
|
|
log1p 0x8.786bdp-4
|
|
log1p 0x7.89dc17790eeb4p-4
|
|
log1p 0x9.81ccf8887c24a7bp-4
|
|
log1p 0xa.5028608bd65f38dp-4
|
|
log1p 0x5.bf78873e20a2d468p-4
|
|
log1p 0x7.aa5198p-4
|
|
|
|
log2 1
|
|
log2 e
|
|
log2 2.0
|
|
log2 16.0
|
|
log2 256.0
|
|
log2 0.75
|
|
log2 0x1.28d3b4p+0
|
|
log2 0xe.d99dap-4
|
|
log2 0x1.63d202d04392cp+0
|
|
log2 0xf.d9ce0b1a50e08p-4
|
|
log2 0x1.07465bdc7e41b52ep+0
|
|
log2 0xf.4dfb4p-48
|
|
log2 0x1.0a588ep+0
|
|
log2 0xb.e77c6p-4
|
|
log2 0x1.4fe37ep+0
|
|
log2 min
|
|
log2 min_subnorm
|
|
|
|
pow 0 0
|
|
pow 0 -0
|
|
pow -0 0
|
|
pow -0 -0
|
|
|
|
pow 10 0
|
|
pow 10 -0
|
|
pow -10 0
|
|
pow -10 -0
|
|
|
|
pow 1 1
|
|
pow 1 -1
|
|
pow 1 1.25
|
|
pow 1 -1.25
|
|
pow 1 0x1p62
|
|
pow 1 0x1p63
|
|
pow 1 0x1p64
|
|
pow 1 0x1p72
|
|
pow 1 min_subnorm
|
|
pow 1 -min_subnorm
|
|
|
|
# pow (x, +-0) == 1.
|
|
pow 32.75 0
|
|
pow 32.75 -0
|
|
pow -32.75 0
|
|
pow -32.75 -0
|
|
pow 0x1p72 0
|
|
pow 0x1p72 -0
|
|
pow 0x1p-72 0
|
|
pow 0x1p-72 -0
|
|
|
|
pow 0x1p72 0x1p72
|
|
pow 10 -0x1p72
|
|
pow max max
|
|
pow 10 -max
|
|
|
|
pow 0 1
|
|
pow 0 11
|
|
|
|
pow -0 1
|
|
pow -0 11
|
|
|
|
pow 0 2
|
|
pow 0 11.1
|
|
|
|
pow -0 2
|
|
pow -0 11.1
|
|
|
|
# pow (+0, y) == +0 for y an odd integer > 0.
|
|
pow 0.0 27
|
|
pow 0.0 0xffffff
|
|
pow 0.0 0x1.fffffffffffffp+52
|
|
pow 0.0 0x1.fffffffffffffffep+63
|
|
pow 0.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow 0.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
|
|
# pow (-0, y) == -0 for y an odd integer > 0.
|
|
pow -0 27
|
|
pow -0 0xffffff
|
|
pow -0 0x1fffffe
|
|
pow -0 0x1.fffffffffffffp+52
|
|
pow -0 0x1.fffffffffffffp+53
|
|
pow -0 0x1.fffffffffffffffep+63
|
|
pow -0 0x1.fffffffffffffffep+64
|
|
pow -0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0 0x1.ffffffffffffffffffffffffffffp+113
|
|
|
|
# pow (+0, y) == +0 for y > 0 and not an odd integer.
|
|
pow 0.0 4
|
|
pow 0.0 0x1p24
|
|
pow 0.0 0x1p127
|
|
pow 0.0 max
|
|
pow 0.0 min_subnorm
|
|
|
|
# pow (-0, y) == +0 for y > 0 and not an odd integer.
|
|
pow -0 4
|
|
pow -0 0x1p24
|
|
pow -0 0x1p127
|
|
pow -0 max
|
|
pow -0 min_subnorm
|
|
|
|
pow 16 0.25
|
|
pow 0x1p64 0.125
|
|
pow 2 4
|
|
pow 256 8
|
|
|
|
pow 0.75 1.25
|
|
|
|
pow -7.49321e+133 -9.80818e+16
|
|
|
|
pow -1.0 -0xffffff
|
|
pow -1.0 -0x1fffffe
|
|
pow -1.0 -0x1.fffffffffffffp+52
|
|
pow -1.0 -0x1.fffffffffffffp+53
|
|
pow -1.0 -0x1.fffffffffffffffep+63
|
|
pow -1.0 -0x1.fffffffffffffffep+64
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -1.0 -max
|
|
|
|
pow -1.0 0xffffff
|
|
pow -1.0 0x1fffffe
|
|
pow -1.0 0x1.fffffffffffffp+52
|
|
pow -1.0 0x1.fffffffffffffp+53
|
|
pow -1.0 0x1.fffffffffffffffep+63
|
|
pow -1.0 0x1.fffffffffffffffep+64
|
|
pow -1.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -1.0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -1.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -1.0 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -1.0 max
|
|
|
|
pow -2.0 126
|
|
pow -2.0 127
|
|
pow -2.0 -126
|
|
pow -2.0 -127
|
|
|
|
pow -2.0 -0xffffff
|
|
pow -2.0 -0x1fffffe
|
|
pow -2.0 -0x1.fffffffffffffp+52
|
|
pow -2.0 -0x1.fffffffffffffp+53
|
|
pow -2.0 -0x1.fffffffffffffffep+63
|
|
pow -2.0 -0x1.fffffffffffffffep+64
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -2.0 -max
|
|
|
|
pow -2.0 0xffffff
|
|
pow -2.0 0x1fffffe
|
|
pow -2.0 0x1.fffffffffffffp+52
|
|
pow -2.0 0x1.fffffffffffffp+53
|
|
pow -2.0 0x1.fffffffffffffffep+63
|
|
pow -2.0 0x1.fffffffffffffffep+64
|
|
pow -2.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -2.0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -2.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -2.0 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -2.0 max
|
|
|
|
pow -max -2
|
|
pow -max -3
|
|
pow -max 2
|
|
pow -max 3
|
|
|
|
pow -max -0xffffff
|
|
pow -max -0x1fffffe
|
|
pow -max -0x1.fffffffffffffp+52
|
|
pow -max -0x1.fffffffffffffp+53
|
|
pow -max -0x1.fffffffffffffffep+63
|
|
pow -max -0x1.fffffffffffffffep+64
|
|
pow -max -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -max -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -max -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -max -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -max -max
|
|
|
|
pow -max 0xffffff
|
|
pow -max 0x1fffffe
|
|
pow -max 0x1.fffffffffffffp+52
|
|
pow -max 0x1.fffffffffffffp+53
|
|
pow -max 0x1.fffffffffffffffep+63
|
|
pow -max 0x1.fffffffffffffffep+64
|
|
pow -max 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -max 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -max 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -max 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -max max
|
|
|
|
pow -0x1p65 2
|
|
pow -0x1p65 3
|
|
pow -0x1p65 4
|
|
pow -0x1p65 5
|
|
pow -0x1p43 3
|
|
pow -0x1p43 4
|
|
pow -0x1p43 5
|
|
pow -0x1p33 4
|
|
pow -0x1p33 5
|
|
pow -0x1p26 5
|
|
pow -0x1p-65 -2
|
|
pow -0x1p-65 -3
|
|
pow -0x1p-65 -4
|
|
pow -0x1p-65 -5
|
|
pow -0x1p-43 -3
|
|
pow -0x1p-43 -4
|
|
pow -0x1p-43 -5
|
|
pow -0x1p-33 -4
|
|
pow -0x1p-33 -5
|
|
pow -0x1p-26 -5
|
|
|
|
pow -0x1p513 2
|
|
pow -0x1p513 3
|
|
pow -0x1p513 4
|
|
pow -0x1p513 5
|
|
pow -0x1p342 3
|
|
pow -0x1p342 4
|
|
pow -0x1p342 5
|
|
pow -0x1p257 4
|
|
pow -0x1p257 5
|
|
pow -0x1p205 5
|
|
pow -0x1p-513 -2
|
|
pow -0x1p-513 -3
|
|
pow -0x1p-513 -4
|
|
pow -0x1p-513 -5
|
|
pow -0x1p-342 -3
|
|
pow -0x1p-342 -4
|
|
pow -0x1p-342 -5
|
|
pow -0x1p-257 -4
|
|
pow -0x1p-257 -5
|
|
pow -0x1p-205 -5
|
|
|
|
pow -0x1p8192 2
|
|
pow -0x1p8192 3
|
|
pow -0x1p8192 4
|
|
pow -0x1p8192 5
|
|
pow -0x1p5462 3
|
|
pow -0x1p5462 4
|
|
pow -0x1p5462 5
|
|
pow -0x1p4097 4
|
|
pow -0x1p4097 5
|
|
pow -0x1p3277 5
|
|
pow -0x1p64 257
|
|
pow -0x1p-8192 -2
|
|
pow -0x1p-8192 -3
|
|
pow -0x1p-8192 -4
|
|
pow -0x1p-8192 -5
|
|
pow -0x1p-5462 -3
|
|
pow -0x1p-5462 -4
|
|
pow -0x1p-5462 -5
|
|
pow -0x1p-4097 -4
|
|
pow -0x1p-4097 -5
|
|
pow -0x1p-3277 -5
|
|
pow -0x1p-64 -257
|
|
|
|
pow -0.5 126
|
|
pow -0.5 127
|
|
pow -0.5 -126
|
|
pow -0.5 -127
|
|
|
|
pow -0.5 -0xffffff
|
|
pow -0.5 -0x1fffffe
|
|
pow -0.5 -0x1.fffffffffffffp+52
|
|
pow -0.5 -0x1.fffffffffffffp+53
|
|
pow -0.5 -0x1.fffffffffffffffep+63
|
|
pow -0.5 -0x1.fffffffffffffffep+64
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -0.5 -max
|
|
|
|
pow -0.5 0xffffff
|
|
pow -0.5 0x1fffffe
|
|
pow -0.5 0x1.fffffffffffffp+52
|
|
pow -0.5 0x1.fffffffffffffp+53
|
|
pow -0.5 0x1.fffffffffffffffep+63
|
|
pow -0.5 0x1.fffffffffffffffep+64
|
|
pow -0.5 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0.5 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0.5 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0.5 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -0.5 max
|
|
|
|
pow -min -2
|
|
pow -min -3
|
|
pow -min 1
|
|
pow -min 2
|
|
pow -min 3
|
|
|
|
pow -min -0xffffff
|
|
pow -min -0x1fffffe
|
|
pow -min -0x1.fffffffffffffp+52
|
|
pow -min -0x1.fffffffffffffp+53
|
|
pow -min -0x1.fffffffffffffffep+63
|
|
pow -min -0x1.fffffffffffffffep+64
|
|
pow -min -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -min -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -min -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -min -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -min -max
|
|
|
|
pow -min 0xffffff
|
|
pow -min 0x1fffffe
|
|
pow -min 0x1.fffffffffffffp+52
|
|
pow -min 0x1.fffffffffffffp+53
|
|
pow -min 0x1.fffffffffffffffep+63
|
|
pow -min 0x1.fffffffffffffffep+64
|
|
pow -min 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -min 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -min 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -min 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -min max
|
|
|
|
pow 0x0.ffffffp0 10
|
|
pow 0x0.ffffffp0 100
|
|
pow 0x0.ffffffp0 1000
|
|
pow 0x0.ffffffp0 0x1p24
|
|
pow 0x0.ffffffp0 0x1p30
|
|
pow 0x0.ffffffp0 0x1.234566p30
|
|
pow 0x0.ffffffp0 -10
|
|
pow 0x0.ffffffp0 -100
|
|
pow 0x0.ffffffp0 -1000
|
|
pow 0x0.ffffffp0 -0x1p24
|
|
pow 0x0.ffffffp0 -0x1p30
|
|
pow 0x0.ffffffp0 -0x1.234566p30
|
|
pow 0x1.000002p0 0x1p24
|
|
pow 0x1.000002p0 0x1.234566p29
|
|
pow 0x1.000002p0 -0x1.234566p29
|
|
|
|
pow 0x0.fffffffffffff8p0 0x1.23456789abcdfp62
|
|
pow 0x0.fffffffffffff8p0 -0x1.23456789abcdfp62
|
|
pow 0x1.0000000000001p0 0x1.23456789abcdfp61
|
|
pow 0x1.0000000000001p0 -0x1.23456789abcdfp61
|
|
|
|
pow 0x0.ffffffffffffffffp0 0x1.23456789abcdef0ep77
|
|
pow 0x0.ffffffffffffffffp0 -0x1.23456789abcdef0ep77
|
|
pow 0x1.0000000000000002p0 0x1.23456789abcdef0ep76
|
|
pow 0x1.0000000000000002p0 -0x1.23456789abcdef0ep76
|
|
|
|
pow 0x0.ffffffffffffffffffffffffffff8p0 0x1.23456789abcdef0123456789abcdp126
|
|
pow 0x0.ffffffffffffffffffffffffffff8p0 -0x1.23456789abcdef0123456789abcdp126
|
|
pow 0x1.0000000000000000000000000001p0 0x1.23456789abcdef0123456789abcdp125
|
|
pow 0x1.0000000000000000000000000001p0 -0x1.23456789abcdef0123456789abcdp125
|
|
|
|
pow 1e4932 0.75
|
|
pow 1e4928 0.75
|
|
pow 1e4924 0.75
|
|
pow 1e4920 0.75
|
|
pow 10.0 4932.0
|
|
pow 10.0 4931.0
|
|
pow 10.0 4930.0
|
|
pow 10.0 4929.0
|
|
pow 10.0 -4931.0
|
|
pow 10.0 -4930.0
|
|
pow 10.0 -4929.0
|
|
pow 1e27 182.0
|
|
pow 1e27 -182.0
|
|
|
|
pow min_subnorm min_subnorm
|
|
pow min_subnorm -min_subnorm
|
|
pow max min_subnorm
|
|
pow max -min_subnorm
|
|
pow 0.99 min_subnorm
|
|
pow 0.99 -min_subnorm
|
|
pow 1.01 min_subnorm
|
|
pow 1.01 -min_subnorm
|
|
|
|
pow 2.0 -100000.0
|
|
|
|
pow 1.0625 1.125
|
|
pow 1.5 1.03125
|
|
pow 0x1.7d1a0a6f2p+681 1.5
|
|
pow 0x1.ce78f2p+0 -0x2.7f1f78p+4
|
|
|
|
sin 0
|
|
sin -0
|
|
sin pi/6
|
|
sin -pi/6
|
|
sin pi/2
|
|
sin -pi/2
|
|
sin 0.75
|
|
sin 0x1p65
|
|
sin -0x1p65
|
|
sin 0x1.7f4134p+103
|
|
sin 0.80190127184058835
|
|
sin 2.522464e-1
|
|
sin 1e22
|
|
sin 0x1p1023
|
|
sin 0x1p16383
|
|
sin 0x1p+120
|
|
sin 0x1p+127
|
|
sin 0x1.fffff8p+127
|
|
sin 0x1.fffffep+127
|
|
sin 0x1p+50
|
|
sin 0x1p+28
|
|
sin 0.93340582292648832662962377071381
|
|
sin 2.3328432680770916363144351635128
|
|
sin 3.7439477503636453548097051680088
|
|
sin 3.9225160069792437411706487182528
|
|
sin 4.0711651639931289992091478779912
|
|
sin 4.7858438478542097982426639646292
|
|
sin 5.9840767662578002727968851104379
|
|
sin 1
|
|
sin 2
|
|
sin 3
|
|
sin 4
|
|
sin 5
|
|
sin 6
|
|
sin 7
|
|
sin 8
|
|
sin 9
|
|
sin 10
|
|
sin 0x1.2001469775ce6p32
|
|
sin -0x3.3de320f6be87ep+1020
|
|
sin 0xe.9f1e5bc3bb88p+112
|
|
sin 0x4.7857dp+68
|
|
sin min
|
|
sin -min
|
|
sin min_subnorm
|
|
sin -min_subnorm
|
|
|
|
sincos 0
|
|
sincos -0
|
|
sincos pi/2
|
|
sincos pi/6
|
|
sincos pi/3
|
|
sincos 0.75
|
|
sincos 0x1p65
|
|
sincos -0x1p65
|
|
sincos 0.80190127184058835
|
|
sincos 1e22
|
|
sincos 0x1p1023
|
|
sincos 0x1p16383
|
|
sincos 0x1p+120
|
|
sincos 0x1p+127
|
|
sincos 0x1.fffff8p+127
|
|
sincos 0x1.fffffep+127
|
|
sincos 0x1p+50
|
|
sincos 0x1p+28
|
|
sincos -0x3.3de320f6be87ep+1020
|
|
sincos 0xe.9f1e5bc3bb88p+112
|
|
sincos 0x4.7857dp+68
|
|
sincos min
|
|
sincos -min
|
|
sincos min_subnorm
|
|
sincos -min_subnorm
|
|
|
|
sinh 0
|
|
sinh -0
|
|
sinh 0.75
|
|
sinh 0x8p-32
|
|
sinh 22
|
|
sinh 23
|
|
sinh 24
|
|
sinh -0x7.55d7f8p-4
|
|
sinh -0x3.f392f8p-4
|
|
sinh 0x1.c56446p+0
|
|
sinh 0x6.cac622d51eebcp-4
|
|
sinh -0x5.c4cb02389c094p+0
|
|
sinh -0x1.646850f515ef2p+0
|
|
sinh -0x7.a8c5f68c81fae5dp-4
|
|
sinh 0x3.4a037p-4
|
|
sinh -0x3.eba6dbcbeceb2p-4
|
|
sinh -0x2.55f63p+0
|
|
sinh -0x3.ca68c96337692p-4
|
|
sinh -0x3.92da05a85024b314p-4
|
|
sinh -0x3.3e6292ed442d450cp-4
|
|
sinh 0x7.6e259d2436fc4p-4
|
|
sinh 0x3.d6e088p-4
|
|
sinh -0x7.688eap-4
|
|
sinh -0xd.dce79p-4
|
|
|
|
sqrt 0
|
|
sqrt -0
|
|
sqrt 2209
|
|
sqrt 4
|
|
sqrt 2
|
|
sqrt 0.25
|
|
sqrt 6642.25
|
|
sqrt 15190.5625
|
|
sqrt 0.75
|
|
sqrt 0x1.fffffffffffffp+1023
|
|
sqrt 0x1.ffffffffffffbp+1023
|
|
sqrt 0x1.ffffffffffff7p+1023
|
|
sqrt 0x1.ffffffffffff3p+1023
|
|
sqrt 0x1.fffffffffffefp+1023
|
|
sqrt 0x1.fffffffffffebp+1023
|
|
sqrt 0x1.fffffffffffe7p+1023
|
|
sqrt 0x1.fffffffffffe3p+1023
|
|
sqrt 0x1.fffffffffffdfp+1023
|
|
sqrt 0x1.fffffffffffdbp+1023
|
|
sqrt 0x1.fffffffffffd7p+1023
|
|
sqrt 0x1.0000000000003p-1022
|
|
sqrt 0x1.0000000000007p-1022
|
|
sqrt 0x1.000000000000bp-1022
|
|
sqrt 0x1.000000000000fp-1022
|
|
sqrt 0x1.0000000000013p-1022
|
|
sqrt 0x1.0000000000017p-1022
|
|
sqrt 0x1.000000000001bp-1022
|
|
sqrt 0x1.000000000001fp-1022
|
|
sqrt 0x1.0000000000023p-1022
|
|
sqrt 0x1.0000000000027p-1022
|
|
sqrt 0x1.000000000002bp-1022
|
|
sqrt 0x1.000000000002fp-1022
|
|
sqrt 0x1.0000000000033p-1022
|
|
sqrt 0x1.0000000000037p-1022
|
|
sqrt 0x1.7167bc36eaa3bp+6
|
|
sqrt 0x1.7570994273ad7p+6
|
|
sqrt 0x1.7dae969442fe6p+6
|
|
sqrt 0x1.7f8444fcf67e5p+6
|
|
sqrt 0x1.8364650e63a54p+6
|
|
sqrt 0x1.85bedd274edd8p+6
|
|
sqrt 0x1.8609cf496ab77p+6
|
|
sqrt 0x1.873849c70a375p+6
|
|
sqrt 0x1.8919c962cbaaep+6
|
|
sqrt 0x1.8de4493e22dc6p+6
|
|
sqrt 0x1.924829a17a288p+6
|
|
sqrt 0x1.92702cd992f12p+6
|
|
sqrt 0x1.92b763a8311fdp+6
|
|
sqrt 0x1.947da013c7293p+6
|
|
sqrt 0x1.9536091c494d2p+6
|
|
sqrt 0x1.61b04c6p-1019
|
|
sqrt 0x1.93789f1p-1018
|
|
sqrt 0x1.a1989b4p-1018
|
|
sqrt 0x1.f93bc9p-1018
|
|
sqrt 0x1.2f675e3p-1017
|
|
sqrt 0x1.a158508p-1017
|
|
sqrt 0x1.cd31f078p-1017
|
|
sqrt 0x1.33b43b08p-1016
|
|
sqrt 0x1.6e66a858p-1016
|
|
sqrt 0x1.8661cbf8p-1016
|
|
sqrt 0x1.bbb221b4p-1016
|
|
sqrt 0x1.c4942f3cp-1016
|
|
sqrt 0x1.dbb258c8p-1016
|
|
sqrt 0x1.57103ea4p-1015
|
|
sqrt 0x1.9b294f88p-1015
|
|
sqrt 0x1.0000000000001p+0
|
|
sqrt 0x1.fffffffffffffp-1
|
|
|
|
tan 0
|
|
tan -0
|
|
tan pi/4
|
|
tan 0.75
|
|
tan 0x1p65
|
|
tan -0x1p65
|
|
tan 0x1p-27
|
|
tan -0x1p-27
|
|
tan 0xc.9p-4
|
|
tan 0xc.908p-4
|
|
tan 0xc.90cp-4
|
|
tan 0xc.90ep-4
|
|
tan 0xc.90fp-4
|
|
tan 0xc.90f8p-4
|
|
tan 0xc.90fcp-4
|
|
tan 0xc.90fdp-4
|
|
tan 0xc.90fd8p-4
|
|
tan 0xc.90fdap-4
|
|
tan 0xc.ap-4
|
|
tan 0xc.98p-4
|
|
tan 0xc.94p-4
|
|
tan 0xc.92p-4
|
|
tan 0xc.91p-4
|
|
tan 0xc.90fep-4
|
|
tan 0xc.90fdcp-4
|
|
tan 0xc.90fdbp-4
|
|
tan -0xc.9p-4
|
|
tan -0xc.908p-4
|
|
tan -0xc.90cp-4
|
|
tan -0xc.90ep-4
|
|
tan -0xc.90fp-4
|
|
tan -0xc.90f8p-4
|
|
tan -0xc.90fcp-4
|
|
tan -0xc.90fdp-4
|
|
tan -0xc.90fd8p-4
|
|
tan -0xc.90fdap-4
|
|
tan -0xc.ap-4
|
|
tan -0xc.98p-4
|
|
tan -0xc.94p-4
|
|
tan -0xc.92p-4
|
|
tan -0xc.91p-4
|
|
tan -0xc.90fep-4
|
|
tan -0xc.90fdcp-4
|
|
tan -0xc.90fdbp-4
|
|
tan 1e22
|
|
tan 0x1p1023
|
|
tan 0x1p16383
|
|
tan 1
|
|
tan 2
|
|
tan 3
|
|
tan 4
|
|
tan 5
|
|
tan 6
|
|
tan 7
|
|
tan 8
|
|
tan 9
|
|
tan 10
|
|
tan -0x1.062a48p+0
|
|
tan -0x1.4f69cp+0
|
|
|
|
tanh 0
|
|
tanh -0
|
|
tanh 0.75
|
|
tanh -0.75
|
|
tanh 1.0
|
|
tanh -1.0
|
|
tanh 0x1p-57
|
|
tanh 0xe.6c659p-4
|
|
tanh 0x8.c259ep-4
|
|
tanh 0x6.5821dp-4
|
|
tanh 0x8.7c9e5p-4
|
|
tanh -0x3.b60d7cp-4
|
|
tanh 0x7.b9985p-4
|
|
tanh 0x7.a18e8p-4
|
|
tanh -0x2.6082fp-4
|
|
tanh 0xe.05031p-16
|
|
tanh 0x3.c80eaa7adaa3p-4
|
|
tanh 0x2.00f9857616524p-4
|
|
|
|
tgamma 0.5
|
|
tgamma -0.5
|
|
|
|
tgamma 1
|
|
tgamma 2
|
|
tgamma 3
|
|
tgamma 4
|
|
tgamma 5
|
|
tgamma 6
|
|
tgamma 7
|
|
tgamma 8
|
|
tgamma 9
|
|
tgamma 10
|
|
|
|
tgamma 0.7
|
|
tgamma 1.2
|
|
|
|
tgamma 1.5
|
|
tgamma 2.5
|
|
tgamma 3.5
|
|
tgamma 4.5
|
|
tgamma 5.5
|
|
tgamma 6.5
|
|
tgamma 7.5
|
|
tgamma 8.5
|
|
tgamma 9.5
|
|
tgamma -1.5
|
|
tgamma -2.5
|
|
tgamma -3.5
|
|
tgamma -4.5
|
|
tgamma -5.5
|
|
tgamma -6.5
|
|
tgamma -7.5
|
|
tgamma -8.5
|
|
tgamma -9.5
|
|
tgamma 0x1p-24
|
|
tgamma -0x1p-24
|
|
tgamma 0x1p-53
|
|
tgamma -0x1p-53
|
|
tgamma 0x1p-64
|
|
tgamma -0x1p-64
|
|
tgamma 0x1p-106
|
|
tgamma -0x1p-106
|
|
tgamma 0x1p-113
|
|
tgamma -0x1p-113
|
|
tgamma 0x1p-127
|
|
tgamma -0x1p-127
|
|
# IEEE semantics mean overflow very close to the threshold depends on
|
|
# the rounding mode; gen-auto-libm-tests does not reflect that glibc
|
|
# does not try to achieve this.
|
|
tgamma 0x1p-128 spurious-overflow:flt-32
|
|
tgamma -0x1p-128
|
|
tgamma 0x1p-149
|
|
tgamma -0x1p-149
|
|
tgamma 0x1p-1023
|
|
tgamma -0x1p-1023
|
|
tgamma 0x1p-1024 spurious-overflow:dbl-64 spurious-overflow:ldbl-128ibm
|
|
tgamma -0x1p-1024
|
|
tgamma 0x1p-1074
|
|
tgamma -0x1p-1074
|
|
tgamma 0x1p-16383
|
|
tgamma -0x1p-16383
|
|
tgamma 0x1p-16384 spurious-overflow:ldbl-96-intel spurious-overflow:ldbl-96-m68k spurious-overflow:ldbl-128
|
|
tgamma -0x1p-16384
|
|
tgamma 0x1p-16445
|
|
tgamma -0x1p-16445
|
|
tgamma 0x1p-16494
|
|
tgamma -0x1p-16494
|
|
tgamma 0x8.00001p0
|
|
tgamma 0x7.fffff8p0
|
|
tgamma 0x7.000008p0
|
|
tgamma 0x6.fffff8p0
|
|
tgamma 0x6.000008p0
|
|
tgamma 0x5.fffff8p0
|
|
tgamma 0x5.000008p0
|
|
tgamma 0x4.fffff8p0
|
|
tgamma 0x4.000008p0
|
|
tgamma 0x3.fffffcp0
|
|
tgamma 0x3.000004p0
|
|
tgamma 0x2.fffffcp0
|
|
tgamma 0x2.000004p0
|
|
tgamma 0x1.fffffep0
|
|
tgamma 0x1.000002p0
|
|
tgamma 0x0.ffffffp0
|
|
tgamma -0x0.ffffffp0
|
|
tgamma -0x1.000002p0
|
|
tgamma -0x1.fffffep0
|
|
tgamma -0x2.000004p0
|
|
tgamma -0x2.fffffcp0
|
|
tgamma -0x3.000004p0
|
|
tgamma -0x3.fffffcp0
|
|
tgamma -0x4.000008p0
|
|
tgamma -0x4.fffff8p0
|
|
tgamma -0x5.000008p0
|
|
tgamma -0x5.fffff8p0
|
|
tgamma -0x6.000008p0
|
|
tgamma -0x6.fffff8p0
|
|
tgamma -0x7.000008p0
|
|
tgamma -0x7.fffff8p0
|
|
tgamma -0x8.00001p0
|
|
tgamma -0x9.fffffp0
|
|
tgamma -0xa.00001p0
|
|
tgamma -0x13.ffffep0
|
|
tgamma -0x14.00002p0
|
|
tgamma -0x1d.ffffep0
|
|
tgamma -0x1e.00002p0
|
|
tgamma -0x27.ffffcp0
|
|
tgamma -0x28.00004p0
|
|
tgamma -0x28.ffffcp0
|
|
tgamma -0x29.00004p0
|
|
tgamma -0x29.ffffcp0
|
|
tgamma -0x2a.00004p0
|
|
tgamma 0x8.0000000000008p0
|
|
tgamma 0x7.ffffffffffffcp0
|
|
tgamma 0x7.0000000000004p0
|
|
tgamma 0x6.ffffffffffffcp0
|
|
tgamma 0x6.0000000000004p0
|
|
tgamma 0x5.ffffffffffffcp0
|
|
tgamma 0x5.0000000000004p0
|
|
tgamma 0x4.ffffffffffffcp0
|
|
tgamma 0x4.0000000000004p0
|
|
tgamma 0x3.ffffffffffffep0
|
|
tgamma 0x3.0000000000002p0
|
|
tgamma 0x2.ffffffffffffep0
|
|
tgamma 0x2.0000000000002p0
|
|
tgamma 0x1.fffffffffffffp0
|
|
tgamma 0x1.0000000000001p0
|
|
tgamma 0x0.fffffffffffff8p0
|
|
tgamma -0x0.fffffffffffff8p0
|
|
tgamma -0x1.0000000000001p0
|
|
tgamma -0x1.fffffffffffffp0
|
|
tgamma -0x2.0000000000002p0
|
|
tgamma -0x2.ffffffffffffep0
|
|
tgamma -0x3.0000000000002p0
|
|
tgamma -0x3.ffffffffffffep0
|
|
tgamma -0x4.0000000000004p0
|
|
tgamma -0x4.ffffffffffffcp0
|
|
tgamma -0x5.0000000000004p0
|
|
tgamma -0x5.ffffffffffffcp0
|
|
tgamma -0x6.0000000000004p0
|
|
tgamma -0x6.ffffffffffffcp0
|
|
tgamma -0x7.0000000000004p0
|
|
tgamma -0x7.ffffffffffffcp0
|
|
tgamma -0x8.0000000000008p0
|
|
tgamma -0x9.ffffffffffff8p0
|
|
tgamma -0xa.0000000000008p0
|
|
tgamma -0x13.ffffffffffffp0
|
|
tgamma -0x14.000000000001p0
|
|
tgamma -0x1d.ffffffffffffp0
|
|
tgamma -0x1e.000000000001p0
|
|
tgamma -0x27.fffffffffffep0
|
|
tgamma -0x28.000000000002p0
|
|
tgamma -0x28.fffffffffffep0
|
|
tgamma -0x29.000000000002p0
|
|
tgamma -0x29.fffffffffffep0
|
|
tgamma -0x2a.000000000002p0
|
|
tgamma -0x31.fffffffffffep0
|
|
tgamma -0x32.000000000002p0
|
|
tgamma -0x63.fffffffffffcp0
|
|
tgamma -0x64.000000000004p0
|
|
tgamma -0x95.fffffffffff8p0
|
|
tgamma -0x96.000000000008p0
|
|
tgamma -0xb4.fffffffffff8p0
|
|
tgamma -0xb5.000000000008p0
|
|
tgamma -0xb5.fffffffffff8p0
|
|
tgamma -0xb6.000000000008p0
|
|
tgamma -0xb6.fffffffffff8p0
|
|
tgamma -0xb7.000000000008p0
|
|
tgamma -0xb7.fffffffffff8p0
|
|
tgamma -0xb8.000000000008p0
|
|
tgamma 0x8.00000000000000000000000004p0
|
|
tgamma 0x7.fffffffffffffffffffffffffep0
|
|
tgamma 0x7.00000000000000000000000002p0
|
|
tgamma 0x6.fffffffffffffffffffffffffep0
|
|
tgamma 0x6.00000000000000000000000002p0
|
|
tgamma 0x5.fffffffffffffffffffffffffep0
|
|
tgamma 0x5.00000000000000000000000002p0
|
|
tgamma 0x4.fffffffffffffffffffffffffep0
|
|
tgamma 0x4.00000000000000000000000002p0
|
|
tgamma 0x3.ffffffffffffffffffffffffffp0
|
|
tgamma 0x3.00000000000000000000000001p0
|
|
tgamma 0x2.ffffffffffffffffffffffffffp0
|
|
tgamma 0x2.00000000000000000000000001p0
|
|
tgamma 0x1.ffffffffffffffffffffffffff8p0
|
|
tgamma 0x1.000000000000000000000000008p0
|
|
tgamma 0x0.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x0.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x1.000000000000000000000000008p0
|
|
tgamma -0x1.ffffffffffffffffffffffffff8p0
|
|
tgamma -0x2.00000000000000000000000001p0
|
|
tgamma -0x2.ffffffffffffffffffffffffffp0
|
|
tgamma -0x3.00000000000000000000000001p0
|
|
tgamma -0x3.ffffffffffffffffffffffffffp0
|
|
tgamma -0x4.00000000000000000000000002p0
|
|
tgamma -0x4.fffffffffffffffffffffffffep0
|
|
tgamma -0x5.00000000000000000000000002p0
|
|
tgamma -0x5.fffffffffffffffffffffffffep0
|
|
tgamma -0x6.00000000000000000000000002p0
|
|
tgamma -0x6.fffffffffffffffffffffffffep0
|
|
tgamma -0x7.00000000000000000000000002p0
|
|
tgamma -0x7.fffffffffffffffffffffffffep0
|
|
tgamma -0x8.00000000000000000000000004p0
|
|
tgamma -0x9.fffffffffffffffffffffffffcp0
|
|
tgamma -0xa.00000000000000000000000004p0
|
|
tgamma -0x13.fffffffffffffffffffffffff8p0
|
|
tgamma -0x14.00000000000000000000000008p0
|
|
tgamma -0x1d.fffffffffffffffffffffffff8p0
|
|
tgamma -0x1e.00000000000000000000000008p0
|
|
tgamma -0x27.fffffffffffffffffffffffffp0
|
|
tgamma -0x28.0000000000000000000000001p0
|
|
tgamma -0x28.fffffffffffffffffffffffffp0
|
|
tgamma -0x29.0000000000000000000000001p0
|
|
tgamma -0x29.fffffffffffffffffffffffffp0
|
|
tgamma -0x2a.0000000000000000000000001p0
|
|
tgamma -0x31.fffffffffffffffffffffffffp0
|
|
tgamma -0x32.0000000000000000000000001p0
|
|
tgamma -0x63.ffffffffffffffffffffffffep0
|
|
tgamma -0x64.0000000000000000000000002p0
|
|
tgamma -0x95.ffffffffffffffffffffffffcp0
|
|
tgamma -0x96.0000000000000000000000004p0
|
|
tgamma -0xb4.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb5.0000000000000000000000004p0
|
|
tgamma -0xb5.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb6.0000000000000000000000004p0
|
|
tgamma -0xb6.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb7.0000000000000000000000004p0
|
|
tgamma -0xb7.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb8.0000000000000000000000004p0
|
|
tgamma -0xbb.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbc.0000000000000000000000004p0
|
|
tgamma -0xbc.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbd.0000000000000000000000004p0
|
|
tgamma -0xbd.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbe.0000000000000000000000004p0
|
|
tgamma -0xbe.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbf.0000000000000000000000004p0
|
|
tgamma 0x8.000000000000001p0
|
|
tgamma 0x7.fffffffffffffff8p0
|
|
tgamma 0x7.0000000000000008p0
|
|
tgamma 0x6.fffffffffffffff8p0
|
|
tgamma 0x6.0000000000000008p0
|
|
tgamma 0x5.fffffffffffffff8p0
|
|
tgamma 0x5.0000000000000008p0
|
|
tgamma 0x4.fffffffffffffff8p0
|
|
tgamma 0x4.0000000000000008p0
|
|
tgamma 0x3.fffffffffffffffcp0
|
|
tgamma 0x3.0000000000000004p0
|
|
tgamma 0x2.fffffffffffffffcp0
|
|
tgamma 0x2.0000000000000004p0
|
|
tgamma 0x1.fffffffffffffffep0
|
|
tgamma 0x1.0000000000000002p0
|
|
tgamma 0x0.ffffffffffffffffp0
|
|
tgamma -0x0.ffffffffffffffffp0
|
|
tgamma -0x1.0000000000000002p0
|
|
tgamma -0x1.fffffffffffffffep0
|
|
tgamma -0x2.0000000000000004p0
|
|
tgamma -0x2.fffffffffffffffcp0
|
|
tgamma -0x3.0000000000000004p0
|
|
tgamma -0x3.fffffffffffffffcp0
|
|
tgamma -0x4.0000000000000008p0
|
|
tgamma -0x4.fffffffffffffff8p0
|
|
tgamma -0x5.0000000000000008p0
|
|
tgamma -0x5.fffffffffffffff8p0
|
|
tgamma -0x6.0000000000000008p0
|
|
tgamma -0x6.fffffffffffffff8p0
|
|
tgamma -0x7.0000000000000008p0
|
|
tgamma -0x7.fffffffffffffff8p0
|
|
tgamma -0x8.000000000000001p0
|
|
tgamma -0x9.fffffffffffffffp0
|
|
tgamma -0xa.000000000000001p0
|
|
tgamma -0x13.ffffffffffffffep0
|
|
tgamma -0x14.000000000000002p0
|
|
tgamma -0x1d.ffffffffffffffep0
|
|
tgamma -0x1e.000000000000002p0
|
|
tgamma -0x27.ffffffffffffffcp0
|
|
tgamma -0x28.000000000000004p0
|
|
tgamma -0x28.ffffffffffffffcp0
|
|
tgamma -0x29.000000000000004p0
|
|
tgamma -0x29.ffffffffffffffcp0
|
|
tgamma -0x2a.000000000000004p0
|
|
tgamma -0x31.ffffffffffffffcp0
|
|
tgamma -0x32.000000000000004p0
|
|
tgamma -0x63.ffffffffffffff8p0
|
|
tgamma -0x64.000000000000008p0
|
|
tgamma -0x95.ffffffffffffffp0
|
|
tgamma -0x96.00000000000001p0
|
|
tgamma -0xb4.ffffffffffffffp0
|
|
tgamma -0xb5.00000000000001p0
|
|
tgamma -0xb5.ffffffffffffffp0
|
|
tgamma -0xb6.00000000000001p0
|
|
tgamma -0xb6.ffffffffffffffp0
|
|
tgamma -0xb7.00000000000001p0
|
|
tgamma -0xb7.ffffffffffffffp0
|
|
tgamma -0xb8.00000000000001p0
|
|
tgamma -0xbb.ffffffffffffffp0
|
|
tgamma -0xbc.00000000000001p0
|
|
tgamma -0xbc.ffffffffffffffp0
|
|
tgamma -0xbd.00000000000001p0
|
|
tgamma -0xbd.ffffffffffffffp0
|
|
tgamma -0xbe.00000000000001p0
|
|
tgamma -0xbe.ffffffffffffffp0
|
|
tgamma -0xbf.00000000000001p0
|
|
tgamma -0xf9.ffffffffffffffp0
|
|
tgamma -0xfa.00000000000001p0
|
|
tgamma -0x1f3.fffffffffffffep0
|
|
tgamma -0x1f4.00000000000002p0
|
|
tgamma -0x2ed.fffffffffffffcp0
|
|
tgamma -0x2ee.00000000000004p0
|
|
tgamma -0x3e7.fffffffffffffcp0
|
|
tgamma -0x3e8.00000000000004p0
|
|
tgamma -0x4e1.fffffffffffff8p0
|
|
tgamma -0x4e2.00000000000008p0
|
|
tgamma -0x5db.fffffffffffff8p0
|
|
tgamma -0x5dc.00000000000008p0
|
|
tgamma -0x6d5.fffffffffffff8p0
|
|
tgamma -0x6d6.00000000000008p0
|
|
tgamma -0x6e2.fffffffffffff8p0
|
|
tgamma -0x6e3.00000000000008p0
|
|
tgamma -0x6e3.fffffffffffff8p0
|
|
tgamma -0x6e4.00000000000008p0
|
|
tgamma -0x6e4.fffffffffffff8p0
|
|
tgamma -0x6e5.00000000000008p0
|
|
tgamma -0x6e5.fffffffffffff8p0
|
|
tgamma -0x6e6.00000000000008p0
|
|
tgamma 0x8.0000000000000000000000000008p0
|
|
tgamma 0x7.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x7.0000000000000000000000000004p0
|
|
tgamma 0x6.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x6.0000000000000000000000000004p0
|
|
tgamma 0x5.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x5.0000000000000000000000000004p0
|
|
tgamma 0x4.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x4.0000000000000000000000000004p0
|
|
tgamma 0x3.fffffffffffffffffffffffffffep0
|
|
tgamma 0x3.0000000000000000000000000002p0
|
|
tgamma 0x2.fffffffffffffffffffffffffffep0
|
|
tgamma 0x2.0000000000000000000000000002p0
|
|
tgamma 0x1.ffffffffffffffffffffffffffffp0
|
|
tgamma 0x1.0000000000000000000000000001p0
|
|
tgamma 0x0.ffffffffffffffffffffffffffff8p0
|
|
tgamma -0x0.ffffffffffffffffffffffffffff8p0
|
|
tgamma -0x1.0000000000000000000000000001p0
|
|
tgamma -0x1.ffffffffffffffffffffffffffffp0
|
|
tgamma -0x2.0000000000000000000000000002p0
|
|
tgamma -0x2.fffffffffffffffffffffffffffep0
|
|
tgamma -0x3.0000000000000000000000000002p0
|
|
tgamma -0x3.fffffffffffffffffffffffffffep0
|
|
tgamma -0x4.0000000000000000000000000004p0
|
|
tgamma -0x4.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x5.0000000000000000000000000004p0
|
|
tgamma -0x5.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x6.0000000000000000000000000004p0
|
|
tgamma -0x6.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x7.0000000000000000000000000004p0
|
|
tgamma -0x7.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x8.0000000000000000000000000008p0
|
|
tgamma -0x9.fffffffffffffffffffffffffff8p0
|
|
tgamma -0xa.0000000000000000000000000008p0
|
|
tgamma -0x13.fffffffffffffffffffffffffffp0
|
|
tgamma -0x14.000000000000000000000000001p0
|
|
tgamma -0x1d.fffffffffffffffffffffffffffp0
|
|
tgamma -0x1e.000000000000000000000000001p0
|
|
tgamma -0x27.ffffffffffffffffffffffffffep0
|
|
tgamma -0x28.000000000000000000000000002p0
|
|
tgamma -0x28.ffffffffffffffffffffffffffep0
|
|
tgamma -0x29.000000000000000000000000002p0
|
|
tgamma -0x29.ffffffffffffffffffffffffffep0
|
|
tgamma -0x2a.000000000000000000000000002p0
|
|
tgamma -0x31.ffffffffffffffffffffffffffep0
|
|
tgamma -0x32.000000000000000000000000002p0
|
|
tgamma -0x63.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x64.000000000000000000000000004p0
|
|
tgamma -0x95.ffffffffffffffffffffffffff8p0
|
|
tgamma -0x96.000000000000000000000000008p0
|
|
tgamma -0xb4.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb5.000000000000000000000000008p0
|
|
tgamma -0xb5.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb6.000000000000000000000000008p0
|
|
tgamma -0xb6.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb7.000000000000000000000000008p0
|
|
tgamma -0xb7.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb8.000000000000000000000000008p0
|
|
tgamma -0xbb.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbc.000000000000000000000000008p0
|
|
tgamma -0xbc.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbd.000000000000000000000000008p0
|
|
tgamma -0xbd.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbe.000000000000000000000000008p0
|
|
tgamma -0xbe.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbf.000000000000000000000000008p0
|
|
tgamma -0xf9.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xfa.000000000000000000000000008p0
|
|
tgamma -0x1f3.ffffffffffffffffffffffffffp0
|
|
tgamma -0x1f4.00000000000000000000000001p0
|
|
tgamma -0x2ed.fffffffffffffffffffffffffep0
|
|
tgamma -0x2ee.00000000000000000000000002p0
|
|
tgamma -0x3e7.fffffffffffffffffffffffffep0
|
|
tgamma -0x3e8.00000000000000000000000002p0
|
|
tgamma -0x4e1.fffffffffffffffffffffffffcp0
|
|
tgamma -0x4e2.00000000000000000000000004p0
|
|
tgamma -0x5db.fffffffffffffffffffffffffcp0
|
|
tgamma -0x5dc.00000000000000000000000004p0
|
|
tgamma -0x6d5.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6d6.00000000000000000000000004p0
|
|
tgamma -0x6e2.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e3.00000000000000000000000004p0
|
|
tgamma -0x6e3.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e4.00000000000000000000000004p0
|
|
tgamma -0x6e4.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e5.00000000000000000000000004p0
|
|
tgamma -0x6e5.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e6.00000000000000000000000004p0
|
|
tgamma -0x6eb.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ec.00000000000000000000000004p0
|
|
tgamma -0x6ec.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ed.00000000000000000000000004p0
|
|
tgamma -0x6ed.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ee.00000000000000000000000004p0
|
|
tgamma -0x6ee.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ef.00000000000000000000000004p0
|
|
tgamma -0x1.0a32a2p+5
|
|
tgamma -0x1.5800000080001p+7
|
|
tgamma 18.5
|
|
tgamma 19.5
|
|
tgamma 23.5
|
|
tgamma 29.5
|
|
tgamma 30.5
|
|
tgamma 31.5
|
|
tgamma 32.5
|
|
tgamma 33.5
|
|
tgamma 34.5
|
|
tgamma 0x2.30a43cp+4
|
|
tgamma 0x2.30a44p+4
|
|
tgamma 0xa.b9fd72b0fb238p+4
|
|
tgamma 0xa.b9fd72b0fb24p+4
|
|
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f4p+4
|
|
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f8p+4
|
|
tgamma 0x6.db8c603359a97108p+8
|
|
tgamma 0x6.db8c603359a9711p+8
|
|
tgamma 0x6.db8c603359a971081bc4a2e9dfdp+8
|
|
tgamma 0x6.db8c603359a971081bc4a2e9dfd4p+8
|
|
tgamma 1e3
|
|
tgamma -100000.5
|
|
tgamma max
|
|
|
|
tgamma -0x3.06644cp+0
|
|
tgamma -0x6.fe4636e0c5064p+0
|
|
tgamma -0x7.a13d7a2945cd5718p+0
|
|
tgamma -0x1.4a5caap+4
|
|
|
|
y0 0.125
|
|
y0 0.75
|
|
y0 1.0
|
|
y0 1.5
|
|
y0 2.0
|
|
y0 8.0
|
|
y0 10.0
|
|
y0 0x1.3ffp+74
|
|
y0 0x1.ff00000000002p+840
|
|
y0 0x1p1023
|
|
y0 0x1p16382
|
|
y0 0x1p16383
|
|
y0 0x1p-10
|
|
y0 0x1p-20
|
|
y0 0x1p-30
|
|
y0 0x1p-40
|
|
y0 0x1p-50
|
|
y0 0x1p-60
|
|
y0 0x1p-70
|
|
y0 0x1p-80
|
|
y0 0x1p-90
|
|
y0 0x1p-100
|
|
y0 0x1p-110
|
|
y0 min
|
|
y0 min_subnorm
|
|
|
|
y1 0.125
|
|
y1 0.75
|
|
y1 1.0
|
|
y1 1.5
|
|
y1 2.0
|
|
y1 8.0
|
|
y1 10.0
|
|
y1 0x1.27e204p+99
|
|
y1 0x1.001000001p+593
|
|
y1 0x1p1023
|
|
y1 0x1p16382
|
|
y1 0x1p16383
|
|
y1 0x1p-10
|
|
y1 0x1p-20
|
|
y1 0x1p-30
|
|
y1 0x1p-40
|
|
y1 0x1p-50
|
|
y1 0x1p-60
|
|
y1 0x1p-70
|
|
y1 0x1p-80
|
|
y1 0x1p-90
|
|
y1 0x1p-100
|
|
y1 0x1p-110
|
|
y1 min
|
|
y1 min_subnorm
|
|
|
|
# yn (0, x) == y0 (x).
|
|
yn 0 0.125
|
|
yn 0 0.75
|
|
yn 0 1.0
|
|
yn 0 1.5
|
|
yn 0 2.0
|
|
yn 0 8.0
|
|
yn 0 10.0
|
|
|
|
# yn (1, x) == y1 (x).
|
|
yn 1 0.125
|
|
yn 1 0.75
|
|
yn 1 1.0
|
|
yn 1 1.5
|
|
yn 1 2.0
|
|
yn 1 8.0
|
|
yn 1 10.0
|
|
|
|
# yn (-1, x) == -y1 (x).
|
|
yn -1 1.0
|
|
|
|
# yn (3, x).
|
|
yn 3 0.125
|
|
yn 3 0.75
|
|
yn 3 1.0
|
|
yn 3 2.0
|
|
yn 3 10.0
|
|
|
|
# yn (10, x).
|
|
yn 10 0.125
|
|
yn 10 0.75
|
|
yn 10 1.0
|
|
yn 10 2.0
|
|
yn 10 10.0
|
|
|
|
yn -10 1.0
|
|
|
|
yn 10 min
|
|
|
|
yn 2 0x1.ffff62p+99
|
|
yn 2 0x1p127
|
|
yn 2 0x1p1023
|
|
yn 2 0x1p16383
|
|
|
|
yn 0 min
|
|
yn 0 min_subnorm
|
|
yn 1 min
|
|
yn 1 min_subnorm
|
|
yn -1 min
|
|
yn -1 min_subnorm
|
|
yn 2 min
|
|
yn 2 min_subnorm
|
|
yn -2 min
|
|
yn -2 min_subnorm
|
|
yn 17 min
|
|
yn 17 min_subnorm
|
|
yn -17 min
|
|
yn -17 min_subnorm
|
|
yn 42 min
|
|
yn 42 min_subnorm
|
|
yn -42 min
|
|
yn -42 min_subnorm
|