mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-07 18:10:07 +00:00
bad852b61b
This commit replaces two usages of SSE2 'movups' with AVX 'vmovdqu'. it could potentially be dangerous to use SSE2 if this function is ever called without using 'vzeroupper' beforehand. While compilers appear to use 'vzeroupper' before function calls if AVX2 has been used, using SSE2 here is more brittle. Since it is not absolutely necessary it should be avoided. It costs 2-extra bytes but the extra bytes should only eat into alignment padding. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
597 lines
16 KiB
ArmAsm
597 lines
16 KiB
ArmAsm
/* memcmp/wmemcmp optimized with 256-bit EVEX instructions.
|
|
Copyright (C) 2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#if IS_IN (libc)
|
|
|
|
/* memcmp/wmemcmp is implemented as:
|
|
1. Use ymm vector compares when possible. The only case where
|
|
vector compares is not possible for when size < CHAR_PER_VEC
|
|
and loading from either s1 or s2 would cause a page cross.
|
|
2. For size from 2 to 7 bytes on page cross, load as big endian
|
|
with movbe and bswap to avoid branches.
|
|
3. Use xmm vector compare when size >= 4 bytes for memcmp or
|
|
size >= 8 bytes for wmemcmp.
|
|
4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a
|
|
to check for early mismatches. Only do this if its guranteed the
|
|
work is not wasted.
|
|
5. If size is 8 * VEC_SIZE or less, unroll the loop.
|
|
6. Compare 4 * VEC_SIZE at a time with the aligned first memory
|
|
area.
|
|
7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less.
|
|
8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less.
|
|
9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less.
|
|
|
|
When possible the implementation tries to optimize for frontend in the
|
|
following ways:
|
|
Throughput:
|
|
1. All code sections that fit are able to run optimally out of the
|
|
LSD.
|
|
2. All code sections that fit are able to run optimally out of the
|
|
DSB
|
|
3. Basic blocks are contained in minimum number of fetch blocks
|
|
necessary.
|
|
|
|
Latency:
|
|
1. Logically connected basic blocks are put in the same
|
|
cache-line.
|
|
2. Logically connected basic blocks that do not fit in the same
|
|
cache-line are put in adjacent lines. This can get beneficial
|
|
L2 spatial prefetching and L1 next-line prefetching. */
|
|
|
|
# include <sysdep.h>
|
|
|
|
# ifndef MEMCMP
|
|
# define MEMCMP __memcmp_evex_movbe
|
|
# endif
|
|
|
|
# define VMOVU vmovdqu64
|
|
|
|
# ifdef USE_AS_WMEMCMP
|
|
# define CHAR_SIZE 4
|
|
# define VPCMP vpcmpd
|
|
# define VPTEST vptestmd
|
|
# else
|
|
# define CHAR_SIZE 1
|
|
# define VPCMP vpcmpub
|
|
# define VPTEST vptestmb
|
|
# endif
|
|
|
|
# define VEC_SIZE 32
|
|
# define PAGE_SIZE 4096
|
|
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
|
|
|
|
# define XMM0 xmm16
|
|
# define XMM1 xmm17
|
|
# define XMM2 xmm18
|
|
# define YMM0 ymm16
|
|
# define XMM1 xmm17
|
|
# define XMM2 xmm18
|
|
# define YMM1 ymm17
|
|
# define YMM2 ymm18
|
|
# define YMM3 ymm19
|
|
# define YMM4 ymm20
|
|
# define YMM5 ymm21
|
|
# define YMM6 ymm22
|
|
|
|
/* Warning!
|
|
wmemcmp has to use SIGNED comparison for elements.
|
|
memcmp has to use UNSIGNED comparison for elemnts.
|
|
*/
|
|
|
|
.section .text.evex,"ax",@progbits
|
|
/* Cache align memcmp entry. This allows for much more thorough
|
|
frontend optimization. */
|
|
ENTRY_P2ALIGN (MEMCMP, 6)
|
|
# ifdef __ILP32__
|
|
/* Clear the upper 32 bits. */
|
|
movl %edx, %edx
|
|
# endif
|
|
cmp $CHAR_PER_VEC, %RDX_LP
|
|
jb L(less_vec)
|
|
|
|
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
|
|
VMOVU (%rsi), %YMM1
|
|
/* Use compare not equals to directly check for mismatch. */
|
|
VPCMP $4, (%rdi), %YMM1, %k1
|
|
kmovd %k1, %eax
|
|
/* NB: eax must be destination register if going to
|
|
L(return_vec_[0,2]). For L(return_vec_3) destination register
|
|
must be ecx. */
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0)
|
|
|
|
cmpq $(CHAR_PER_VEC * 2), %rdx
|
|
jbe L(last_1x_vec)
|
|
|
|
/* Check second VEC no matter what. */
|
|
VMOVU VEC_SIZE(%rsi), %YMM2
|
|
VPCMP $4, VEC_SIZE(%rdi), %YMM2, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_1)
|
|
|
|
/* Less than 4 * VEC. */
|
|
cmpq $(CHAR_PER_VEC * 4), %rdx
|
|
jbe L(last_2x_vec)
|
|
|
|
/* Check third and fourth VEC no matter what. */
|
|
VMOVU (VEC_SIZE * 2)(%rsi), %YMM3
|
|
VPCMP $4, (VEC_SIZE * 2)(%rdi), %YMM3, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_2)
|
|
|
|
VMOVU (VEC_SIZE * 3)(%rsi), %YMM4
|
|
VPCMP $4, (VEC_SIZE * 3)(%rdi), %YMM4, %k1
|
|
kmovd %k1, %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(return_vec_3)
|
|
|
|
/* Go to 4x VEC loop. */
|
|
cmpq $(CHAR_PER_VEC * 8), %rdx
|
|
ja L(more_8x_vec)
|
|
|
|
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
|
|
branches. */
|
|
|
|
/* Load first two VEC from s2 before adjusting addresses. */
|
|
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %YMM1
|
|
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %YMM2
|
|
leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi
|
|
leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi
|
|
|
|
/* Wait to load from s1 until addressed adjust due to
|
|
unlamination of microfusion with complex address mode. */
|
|
|
|
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
|
|
will have some 1s. */
|
|
vpxorq (%rdi), %YMM1, %YMM1
|
|
vpxorq (VEC_SIZE)(%rdi), %YMM2, %YMM2
|
|
|
|
VMOVU (VEC_SIZE * 2)(%rsi), %YMM3
|
|
vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
|
|
|
|
VMOVU (VEC_SIZE * 3)(%rsi), %YMM4
|
|
/* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with YMM4 while
|
|
oring with YMM1. Result is stored in YMM4. */
|
|
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %YMM1, %YMM4
|
|
|
|
/* Or together YMM2, YMM3, and YMM4 into YMM4. */
|
|
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
|
|
|
/* Test YMM4 against itself. Store any CHAR mismatches in k1.
|
|
*/
|
|
VPTEST %YMM4, %YMM4, %k1
|
|
/* k1 must go to ecx for L(return_vec_0_1_2_3). */
|
|
kmovd %k1, %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(return_vec_0_1_2_3)
|
|
/* NB: eax must be zero to reach here. */
|
|
ret
|
|
|
|
.p2align 4
|
|
L(8x_end_return_vec_0_1_2_3):
|
|
movq %rdx, %rdi
|
|
L(8x_return_vec_0_1_2_3):
|
|
addq %rdi, %rsi
|
|
L(return_vec_0_1_2_3):
|
|
VPTEST %YMM1, %YMM1, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0)
|
|
|
|
VPTEST %YMM2, %YMM2, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_1)
|
|
|
|
VPTEST %YMM3, %YMM3, %k0
|
|
kmovd %k0, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_2)
|
|
L(return_vec_3):
|
|
/* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one
|
|
fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache
|
|
line. */
|
|
bsfl %ecx, %ecx
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax
|
|
xorl %edx, %edx
|
|
cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax
|
|
movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(return_vec_0):
|
|
tzcntl %eax, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (%rsi, %rax, CHAR_SIZE), %ecx
|
|
/* NB: no partial register stall here because xorl zero idiom
|
|
above. */
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (%rsi, %rax), %ecx
|
|
movzbl (%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(return_vec_1):
|
|
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one
|
|
fetch block. */
|
|
bsfl %eax, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl VEC_SIZE(%rsi, %rax), %ecx
|
|
movzbl VEC_SIZE(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 10
|
|
L(return_vec_2):
|
|
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one
|
|
fetch block. */
|
|
bsfl %eax, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx
|
|
movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(more_8x_vec):
|
|
/* Set end of s1 in rdx. */
|
|
leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx
|
|
/* rsi stores s2 - s1. This allows loop to only update one
|
|
pointer. */
|
|
subq %rdi, %rsi
|
|
/* Align s1 pointer. */
|
|
andq $-VEC_SIZE, %rdi
|
|
/* Adjust because first 4x vec where check already. */
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
|
|
.p2align 4
|
|
L(loop_4x_vec):
|
|
VMOVU (%rsi, %rdi), %YMM1
|
|
vpxorq (%rdi), %YMM1, %YMM1
|
|
VMOVU VEC_SIZE(%rsi, %rdi), %YMM2
|
|
vpxorq VEC_SIZE(%rdi), %YMM2, %YMM2
|
|
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %YMM3
|
|
vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %YMM4
|
|
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %YMM1, %YMM4
|
|
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
|
VPTEST %YMM4, %YMM4, %k1
|
|
kmovd %k1, %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(8x_return_vec_0_1_2_3)
|
|
subq $-(VEC_SIZE * 4), %rdi
|
|
cmpq %rdx, %rdi
|
|
jb L(loop_4x_vec)
|
|
|
|
subq %rdx, %rdi
|
|
/* rdi has 4 * VEC_SIZE - remaining length. */
|
|
cmpl $(VEC_SIZE * 3), %edi
|
|
jae L(8x_last_1x_vec)
|
|
/* Load regardless of branch. */
|
|
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %YMM3
|
|
cmpl $(VEC_SIZE * 2), %edi
|
|
jae L(8x_last_2x_vec)
|
|
|
|
vpxorq (VEC_SIZE * 2)(%rdx), %YMM3, %YMM3
|
|
|
|
VMOVU (%rsi, %rdx), %YMM1
|
|
vpxorq (%rdx), %YMM1, %YMM1
|
|
|
|
VMOVU VEC_SIZE(%rsi, %rdx), %YMM2
|
|
vpxorq VEC_SIZE(%rdx), %YMM2, %YMM2
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM4
|
|
vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %YMM1, %YMM4
|
|
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
|
|
VPTEST %YMM4, %YMM4, %k1
|
|
kmovd %k1, %ecx
|
|
testl %ecx, %ecx
|
|
jnz L(8x_end_return_vec_0_1_2_3)
|
|
/* NB: eax must be zero to reach here. */
|
|
ret
|
|
|
|
/* Only entry is from L(more_8x_vec). */
|
|
.p2align 4,, 10
|
|
L(8x_last_2x_vec):
|
|
VPCMP $4, (VEC_SIZE * 2)(%rdx), %YMM3, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(8x_return_vec_2)
|
|
/* Naturally aligned to 16 bytes. */
|
|
L(8x_last_1x_vec):
|
|
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM1
|
|
VPCMP $4, (VEC_SIZE * 3)(%rdx), %YMM1, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(8x_return_vec_3)
|
|
ret
|
|
|
|
/* Not ideally aligned (at offset +9 bytes in fetch block) but
|
|
not aligning keeps it in the same cache line as
|
|
L(8x_last_1x/2x_vec) so likely worth it. As well, saves code
|
|
size. */
|
|
.p2align 4,, 4
|
|
L(8x_return_vec_2):
|
|
subq $VEC_SIZE, %rdx
|
|
L(8x_return_vec_3):
|
|
bsfl %eax, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
leaq (%rdx, %rax, CHAR_SIZE), %rax
|
|
movl (VEC_SIZE * 3)(%rax), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
addq %rdx, %rax
|
|
movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx
|
|
movzbl (VEC_SIZE * 3)(%rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4,, 10
|
|
L(last_2x_vec):
|
|
/* Check second to last VEC. */
|
|
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %YMM1
|
|
VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %YMM1, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_1_end)
|
|
|
|
/* Check last VEC. */
|
|
.p2align 4
|
|
L(last_1x_vec):
|
|
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %YMM1
|
|
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %YMM1, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0_end)
|
|
ret
|
|
|
|
.p2align 4,, 10
|
|
L(return_vec_1_end):
|
|
/* Use bsf to save code size. This is necessary to have
|
|
L(one_or_less) fit in aligning bytes between. */
|
|
bsfl %eax, %eax
|
|
addl %edx, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx
|
|
movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
/* NB: L(one_or_less) fits in alignment padding between
|
|
L(return_vec_1_end) and L(return_vec_0_end). */
|
|
# ifdef USE_AS_WMEMCMP
|
|
L(one_or_less):
|
|
jb L(zero)
|
|
movl (%rdi), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (%rsi), %ecx
|
|
je L(zero)
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
ret
|
|
# else
|
|
L(one_or_less):
|
|
jb L(zero)
|
|
movzbl (%rsi), %ecx
|
|
movzbl (%rdi), %eax
|
|
subl %ecx, %eax
|
|
ret
|
|
# endif
|
|
L(zero):
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
.p2align 4
|
|
L(return_vec_0_end):
|
|
tzcntl %eax, %eax
|
|
addl %edx, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl -VEC_SIZE(%rsi, %rax), %ecx
|
|
movzbl -VEC_SIZE(%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(less_vec):
|
|
/* Check if one or less CHAR. This is necessary for size == 0
|
|
but is also faster for size == CHAR_SIZE. */
|
|
cmpl $1, %edx
|
|
jbe L(one_or_less)
|
|
|
|
/* Check if loading one VEC from either s1 or s2 could cause a
|
|
page cross. This can have false positives but is by far the
|
|
fastest method. */
|
|
movl %edi, %eax
|
|
orl %esi, %eax
|
|
andl $(PAGE_SIZE - 1), %eax
|
|
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
|
|
jg L(page_cross_less_vec)
|
|
|
|
/* No page cross possible. */
|
|
VMOVU (%rsi), %YMM2
|
|
VPCMP $4, (%rdi), %YMM2, %k1
|
|
kmovd %k1, %eax
|
|
/* Check if any matches where in bounds. Intentionally not
|
|
storing result in eax to limit dependency chain if it goes to
|
|
L(return_vec_0_lv). */
|
|
bzhil %edx, %eax, %edx
|
|
jnz L(return_vec_0_lv)
|
|
xorl %eax, %eax
|
|
ret
|
|
|
|
/* Essentially duplicate of L(return_vec_0). Ends up not costing
|
|
any code as shrinks L(less_vec) by allowing 2-byte encoding of
|
|
the jump and ends up fitting in aligning bytes. As well fits on
|
|
same cache line as L(less_vec) so also saves a line from having
|
|
to be fetched on cold calls to memcmp. */
|
|
.p2align 4,, 4
|
|
L(return_vec_0_lv):
|
|
tzcntl %eax, %eax
|
|
# ifdef USE_AS_WMEMCMP
|
|
movl (%rdi, %rax, CHAR_SIZE), %ecx
|
|
xorl %edx, %edx
|
|
cmpl (%rsi, %rax, CHAR_SIZE), %ecx
|
|
/* NB: no partial register stall here because xorl zero idiom
|
|
above. */
|
|
setg %dl
|
|
leal -1(%rdx, %rdx), %eax
|
|
# else
|
|
movzbl (%rsi, %rax), %ecx
|
|
movzbl (%rdi, %rax), %eax
|
|
subl %ecx, %eax
|
|
# endif
|
|
ret
|
|
|
|
.p2align 4
|
|
L(page_cross_less_vec):
|
|
/* if USE_AS_WMEMCMP it can only be 0, 4, 8, 12, 16, 20, 24, 28
|
|
bytes. */
|
|
cmpl $(16 / CHAR_SIZE), %edx
|
|
jae L(between_16_31)
|
|
# ifndef USE_AS_WMEMCMP
|
|
cmpl $8, %edx
|
|
jae L(between_8_15)
|
|
cmpl $4, %edx
|
|
jb L(between_2_3)
|
|
|
|
/* Load as big endian with overlapping movbe to avoid branches.
|
|
*/
|
|
movbe (%rdi), %eax
|
|
movbe (%rsi), %ecx
|
|
shlq $32, %rax
|
|
shlq $32, %rcx
|
|
movbe -4(%rdi, %rdx), %edi
|
|
movbe -4(%rsi, %rdx), %esi
|
|
orq %rdi, %rax
|
|
orq %rsi, %rcx
|
|
subq %rcx, %rax
|
|
/* edx is guranteed to be positive int32 in range [4, 7]. */
|
|
cmovne %edx, %eax
|
|
/* ecx is -1 if rcx > rax. Otherwise 0. */
|
|
sbbl %ecx, %ecx
|
|
/* If rcx > rax, then ecx is 0 and eax is positive. If rcx ==
|
|
rax then eax and ecx are zero. If rax < rax then ecx is -1 so
|
|
eax doesn't matter. */
|
|
orl %ecx, %eax
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(between_8_15):
|
|
# endif
|
|
/* If USE_AS_WMEMCMP fall through into 8-15 byte case. */
|
|
vmovq (%rdi), %xmm1
|
|
vmovq (%rsi), %xmm2
|
|
VPCMP $4, %xmm1, %xmm2, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0_lv)
|
|
/* Use overlapping loads to avoid branches. */
|
|
vmovq -8(%rdi, %rdx, CHAR_SIZE), %xmm1
|
|
vmovq -8(%rsi, %rdx, CHAR_SIZE), %xmm2
|
|
VPCMP $4, %xmm1, %xmm2, %k1
|
|
addl $(CHAR_PER_VEC - (8 / CHAR_SIZE)), %edx
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0_end)
|
|
ret
|
|
|
|
.p2align 4,, 8
|
|
L(between_16_31):
|
|
/* From 16 to 31 bytes. No branch when size == 16. */
|
|
|
|
/* Use movups to save code size. */
|
|
vmovdqu (%rsi), %xmm2
|
|
VPCMP $4, (%rdi), %xmm2, %k1
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0_lv)
|
|
/* Use overlapping loads to avoid branches. */
|
|
vmovdqu -16(%rsi, %rdx, CHAR_SIZE), %xmm2
|
|
VPCMP $4, -16(%rdi, %rdx, CHAR_SIZE), %xmm2, %k1
|
|
addl $(CHAR_PER_VEC - (16 / CHAR_SIZE)), %edx
|
|
kmovd %k1, %eax
|
|
testl %eax, %eax
|
|
jnz L(return_vec_0_end)
|
|
ret
|
|
|
|
# ifndef USE_AS_WMEMCMP
|
|
L(between_2_3):
|
|
/* Load as big endian to avoid branches. */
|
|
movzwl (%rdi), %eax
|
|
movzwl (%rsi), %ecx
|
|
shll $8, %eax
|
|
shll $8, %ecx
|
|
bswap %eax
|
|
bswap %ecx
|
|
movzbl -1(%rdi, %rdx), %edi
|
|
movzbl -1(%rsi, %rdx), %esi
|
|
orl %edi, %eax
|
|
orl %esi, %ecx
|
|
/* Subtraction is okay because the upper 8 bits are zero. */
|
|
subl %ecx, %eax
|
|
ret
|
|
# endif
|
|
END (MEMCMP)
|
|
#endif
|