mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 06:50:07 +00:00
e302e10213
This includes a fix for big-endian in AdvSIMD log, some cosmetic changes, and numerous small optimisations mainly around inlining and using indexed variants of MLA intrinsics. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
123 lines
4.4 KiB
C
123 lines
4.4 KiB
C
/* Double-precision AdvSIMD inverse cos
|
|
|
|
Copyright (C) 2023-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
#include "poly_advsimd_f64.h"
|
|
|
|
static const struct data
|
|
{
|
|
float64x2_t poly[12];
|
|
float64x2_t pi, pi_over_2;
|
|
uint64x2_t abs_mask;
|
|
} data = {
|
|
/* Polynomial approximation of (asin(sqrt(x)) - sqrt(x)) / (x * sqrt(x))
|
|
on [ 0x1p-106, 0x1p-2 ], relative error: 0x1.c3d8e169p-57. */
|
|
.poly = { V2 (0x1.555555555554ep-3), V2 (0x1.3333333337233p-4),
|
|
V2 (0x1.6db6db67f6d9fp-5), V2 (0x1.f1c71fbd29fbbp-6),
|
|
V2 (0x1.6e8b264d467d6p-6), V2 (0x1.1c5997c357e9dp-6),
|
|
V2 (0x1.c86a22cd9389dp-7), V2 (0x1.856073c22ebbep-7),
|
|
V2 (0x1.fd1151acb6bedp-8), V2 (0x1.087182f799c1dp-6),
|
|
V2 (-0x1.6602748120927p-7), V2 (0x1.cfa0dd1f9478p-6), },
|
|
.pi = V2 (0x1.921fb54442d18p+1),
|
|
.pi_over_2 = V2 (0x1.921fb54442d18p+0),
|
|
.abs_mask = V2 (0x7fffffffffffffff),
|
|
};
|
|
|
|
#define AllMask v_u64 (0xffffffffffffffff)
|
|
#define Oneu 0x3ff0000000000000
|
|
#define Small 0x3e50000000000000 /* 2^-53. */
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
static float64x2_t VPCS_ATTR NOINLINE
|
|
special_case (float64x2_t x, float64x2_t y, uint64x2_t special)
|
|
{
|
|
return v_call_f64 (acos, x, y, special);
|
|
}
|
|
#endif
|
|
|
|
/* Double-precision implementation of vector acos(x).
|
|
|
|
For |x| < Small, approximate acos(x) by pi/2 - x. Small = 2^-53 for correct
|
|
rounding.
|
|
If WANT_SIMD_EXCEPT = 0, Small = 0 and we proceed with the following
|
|
approximation.
|
|
|
|
For |x| in [Small, 0.5], use an order 11 polynomial P such that the final
|
|
approximation of asin is an odd polynomial:
|
|
|
|
acos(x) ~ pi/2 - (x + x^3 P(x^2)).
|
|
|
|
The largest observed error in this region is 1.18 ulps,
|
|
_ZGVnN2v_acos (0x1.fbab0a7c460f6p-2) got 0x1.0d54d1985c068p+0
|
|
want 0x1.0d54d1985c069p+0.
|
|
|
|
For |x| in [0.5, 1.0], use same approximation with a change of variable
|
|
|
|
acos(x) = y + y * z * P(z), with z = (1-x)/2 and y = sqrt(z).
|
|
|
|
The largest observed error in this region is 1.52 ulps,
|
|
_ZGVnN2v_acos (0x1.23d362722f591p-1) got 0x1.edbbedf8a7d6ep-1
|
|
want 0x1.edbbedf8a7d6cp-1. */
|
|
float64x2_t VPCS_ATTR V_NAME_D1 (acos) (float64x2_t x)
|
|
{
|
|
const struct data *d = ptr_barrier (&data);
|
|
|
|
float64x2_t ax = vabsq_f64 (x);
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
/* A single comparison for One, Small and QNaN. */
|
|
uint64x2_t special
|
|
= vcgtq_u64 (vsubq_u64 (vreinterpretq_u64_f64 (ax), v_u64 (Small)),
|
|
v_u64 (Oneu - Small));
|
|
if (__glibc_unlikely (v_any_u64 (special)))
|
|
return special_case (x, x, AllMask);
|
|
#endif
|
|
|
|
uint64x2_t a_le_half = vcleq_f64 (ax, v_f64 (0.5));
|
|
|
|
/* Evaluate polynomial Q(x) = z + z * z2 * P(z2) with
|
|
z2 = x ^ 2 and z = |x| , if |x| < 0.5
|
|
z2 = (1 - |x|) / 2 and z = sqrt(z2), if |x| >= 0.5. */
|
|
float64x2_t z2 = vbslq_f64 (a_le_half, vmulq_f64 (x, x),
|
|
vfmaq_f64 (v_f64 (0.5), v_f64 (-0.5), ax));
|
|
float64x2_t z = vbslq_f64 (a_le_half, ax, vsqrtq_f64 (z2));
|
|
|
|
/* Use a single polynomial approximation P for both intervals. */
|
|
float64x2_t z4 = vmulq_f64 (z2, z2);
|
|
float64x2_t z8 = vmulq_f64 (z4, z4);
|
|
float64x2_t z16 = vmulq_f64 (z8, z8);
|
|
float64x2_t p = v_estrin_11_f64 (z2, z4, z8, z16, d->poly);
|
|
|
|
/* Finalize polynomial: z + z * z2 * P(z2). */
|
|
p = vfmaq_f64 (z, vmulq_f64 (z, z2), p);
|
|
|
|
/* acos(|x|) = pi/2 - sign(x) * Q(|x|), for |x| < 0.5
|
|
= 2 Q(|x|) , for 0.5 < x < 1.0
|
|
= pi - 2 Q(|x|) , for -1.0 < x < -0.5. */
|
|
float64x2_t y = vbslq_f64 (d->abs_mask, p, x);
|
|
|
|
uint64x2_t is_neg = vcltzq_f64 (x);
|
|
float64x2_t off = vreinterpretq_f64_u64 (
|
|
vandq_u64 (is_neg, vreinterpretq_u64_f64 (d->pi)));
|
|
float64x2_t mul = vbslq_f64 (a_le_half, v_f64 (-1.0), v_f64 (2.0));
|
|
float64x2_t add = vbslq_f64 (a_le_half, d->pi_over_2, off);
|
|
|
|
return vfmaq_f64 (add, mul, y);
|
|
}
|