glibc/sysdeps/ieee754/dbl-64/e_pow.c
Wilco Dijkstra 220622dde5 Add libm_alias_finite for _finite symbols
This patch adds a new macro, libm_alias_finite, to define all _finite
symbol.  It sets all _finite symbol as compat symbol based on its first
version (obtained from the definition at built generated first-versions.h).

The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need
special treatment in code that is shared between long double and float128.
It is done by adding a list, similar to internal symbol redifinition,
on sysdeps/ieee754/float128/float128_private.h.

Alpha also needs some tricky changes to ensure we still emit 2 compat
symbols for sqrt(f).

Passes buildmanyglibc.

Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
2020-01-03 10:02:04 -03:00

391 lines
12 KiB
C

/* Double-precision x^y function.
Copyright (C) 2018-2020 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"
/*
Worst-case error: 0.54 ULP (~= ulperr_exp + 1024*Ln2*relerr_log*2^53)
relerr_log: 1.3 * 2^-68 (Relative error of log, 1.5 * 2^-68 without fma)
ulperr_exp: 0.509 ULP (ULP error of exp, 0.511 ULP without fma)
*/
#define T __pow_log_data.tab
#define A __pow_log_data.poly
#define Ln2hi __pow_log_data.ln2hi
#define Ln2lo __pow_log_data.ln2lo
#define N (1 << POW_LOG_TABLE_BITS)
#define OFF 0x3fe6955500000000
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline double_t
log_inline (uint64_t ix, double_t *tail)
{
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t z, r, y, invc, logc, logctail, kd, hi, t1, t2, lo, lo1, lo2, p;
uint64_t iz, tmp;
int k, i;
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
tmp = ix - OFF;
i = (tmp >> (52 - POW_LOG_TABLE_BITS)) % N;
k = (int64_t) tmp >> 52; /* arithmetic shift */
iz = ix - (tmp & 0xfffULL << 52);
z = asdouble (iz);
kd = (double_t) k;
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
invc = T[i].invc;
logc = T[i].logc;
logctail = T[i].logctail;
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
#ifdef __FP_FAST_FMA
r = __builtin_fma (z, invc, -1.0);
#else
/* Split z such that rhi, rlo and rhi*rhi are exact and |rlo| <= |r|. */
double_t zhi = asdouble ((iz + (1ULL << 31)) & (-1ULL << 32));
double_t zlo = z - zhi;
double_t rhi = zhi * invc - 1.0;
double_t rlo = zlo * invc;
r = rhi + rlo;
#endif
/* k*Ln2 + log(c) + r. */
t1 = kd * Ln2hi + logc;
t2 = t1 + r;
lo1 = kd * Ln2lo + logctail;
lo2 = t1 - t2 + r;
/* Evaluation is optimized assuming superscalar pipelined execution. */
double_t ar, ar2, ar3, lo3, lo4;
ar = A[0] * r; /* A[0] = -0.5. */
ar2 = r * ar;
ar3 = r * ar2;
/* k*Ln2 + log(c) + r + A[0]*r*r. */
#ifdef __FP_FAST_FMA
hi = t2 + ar2;
lo3 = __builtin_fma (ar, r, -ar2);
lo4 = t2 - hi + ar2;
#else
double_t arhi = A[0] * rhi;
double_t arhi2 = rhi * arhi;
hi = t2 + arhi2;
lo3 = rlo * (ar + arhi);
lo4 = t2 - hi + arhi2;
#endif
/* p = log1p(r) - r - A[0]*r*r. */
p = (ar3
* (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r * A[6]))));
lo = lo1 + lo2 + lo3 + lo4 + p;
y = hi + lo;
*tail = hi - y + lo;
return y;
}
#undef N
#undef T
#define N (1 << EXP_TABLE_BITS)
#define InvLn2N __exp_data.invln2N
#define NegLn2hiN __exp_data.negln2hiN
#define NegLn2loN __exp_data.negln2loN
#define Shift __exp_data.shift
#define T __exp_data.tab
#define C2 __exp_data.poly[5 - EXP_POLY_ORDER]
#define C3 __exp_data.poly[6 - EXP_POLY_ORDER]
#define C4 __exp_data.poly[7 - EXP_POLY_ORDER]
#define C5 __exp_data.poly[8 - EXP_POLY_ORDER]
#define C6 __exp_data.poly[9 - EXP_POLY_ORDER]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by <= 460. */
sbits -= 1009ull << 52;
scale = asdouble (sbits);
y = 0x1p1009 * (scale + scale * tmp);
return check_oflow (y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
/* Note: sbits is signed scale. */
scale = asdouble (sbits);
y = scale + scale * tmp;
if (fabs (y) < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo, one = 1.0;
if (y < 0.0)
one = -1.0;
lo = scale - y + scale * tmp;
hi = one + y;
lo = one - hi + y + lo;
y = math_narrow_eval (hi + lo) - one;
/* Fix the sign of 0. */
if (y == 0.0)
y = asdouble (sbits & 0x8000000000000000);
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
#define SIGN_BIAS (0x800 << EXP_TABLE_BITS)
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
The sign_bias argument is SIGN_BIAS or 0 and sets the sign to -1 or 1. */
static inline double
exp_inline (double x, double xtail, uint32_t sign_bias)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, z, r, r2, scale, tail, tmp;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - top12 (0x1p-54)
>= top12 (512.0) - top12 (0x1p-54)))
{
if (abstop - top12 (0x1p-54) >= 0x80000000)
{
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
double_t one = WANT_ROUNDING ? 1.0 + x : 1.0;
return sign_bias ? -one : one;
}
if (abstop >= top12 (1024.0))
{
/* Note: inf and nan are already handled. */
if (asuint64 (x) >> 63)
return __math_uflow (sign_bias);
else
return __math_oflow (sign_bias);
}
/* Large x is special cased below. */
abstop = 0;
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
z = InvLn2N * x;
#if TOINT_INTRINSICS
/* z - kd is in [-0.5, 0.5] in all rounding modes. */
kd = roundtoint (z);
ki = converttoint (z);
#else
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
kd = math_narrow_eval (z + Shift);
ki = asuint64 (kd);
kd -= Shift;
#endif
r = x + kd * NegLn2hiN + kd * NegLn2loN;
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r += xtail;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = (ki + sign_bias) << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.25/N ulp larger. */
/* Worst case error is less than 0.5+1.11/N+(abs poly error * 2^53) ulp. */
tmp = tail + r + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int
checkint (uint64_t iy)
{
int e = iy >> 52 & 0x7ff;
if (e < 0x3ff)
return 0;
if (e > 0x3ff + 52)
return 2;
if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
return 0;
if (iy & (1ULL << (0x3ff + 52 - e)))
return 1;
return 2;
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline int
zeroinfnan (uint64_t i)
{
return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
}
#ifndef SECTION
# define SECTION
#endif
double
SECTION
__pow (double x, double y)
{
uint32_t sign_bias = 0;
uint64_t ix, iy;
uint32_t topx, topy;
ix = asuint64 (x);
iy = asuint64 (y);
topx = top12 (x);
topy = top12 (y);
if (__glibc_unlikely (topx - 0x001 >= 0x7ff - 0x001
|| (topy & 0x7ff) - 0x3be >= 0x43e - 0x3be))
{
/* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
/* Special cases: (x < 0x1p-126 or inf or nan) or
(|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
if (__glibc_unlikely (zeroinfnan (iy)))
{
if (2 * iy == 0)
return issignaling_inline (x) ? x + y : 1.0;
if (ix == asuint64 (1.0))
return issignaling_inline (y) ? x + y : 1.0;
if (2 * ix > 2 * asuint64 (INFINITY)
|| 2 * iy > 2 * asuint64 (INFINITY))
return x + y;
if (2 * ix == 2 * asuint64 (1.0))
return 1.0;
if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
return y * y;
}
if (__glibc_unlikely (zeroinfnan (ix)))
{
double_t x2 = x * x;
if (ix >> 63 && checkint (iy) == 1)
{
x2 = -x2;
sign_bias = 1;
}
if (WANT_ERRNO && 2 * ix == 0 && iy >> 63)
return __math_divzero (sign_bias);
/* Without the barrier some versions of clang hoist the 1/x2 and
thus division by zero exception can be signaled spuriously. */
return iy >> 63 ? math_opt_barrier (1 / x2) : x2;
}
/* Here x and y are non-zero finite. */
if (ix >> 63)
{
/* Finite x < 0. */
int yint = checkint (iy);
if (yint == 0)
return __math_invalid (x);
if (yint == 1)
sign_bias = SIGN_BIAS;
ix &= 0x7fffffffffffffff;
topx &= 0x7ff;
}
if ((topy & 0x7ff) - 0x3be >= 0x43e - 0x3be)
{
/* Note: sign_bias == 0 here because y is not odd. */
if (ix == asuint64 (1.0))
return 1.0;
if ((topy & 0x7ff) < 0x3be)
{
/* |y| < 2^-65, x^y ~= 1 + y*log(x). */
if (WANT_ROUNDING)
return ix > asuint64 (1.0) ? 1.0 + y : 1.0 - y;
else
return 1.0;
}
return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
: __math_uflow (0);
}
if (topx == 0)
{
/* Normalize subnormal x so exponent becomes negative. */
ix = asuint64 (x * 0x1p52);
ix &= 0x7fffffffffffffff;
ix -= 52ULL << 52;
}
}
double_t lo;
double_t hi = log_inline (ix, &lo);
double_t ehi, elo;
#ifdef __FP_FAST_FMA
ehi = y * hi;
elo = y * lo + __builtin_fma (y, hi, -ehi);
#else
double_t yhi = asdouble (iy & -1ULL << 27);
double_t ylo = y - yhi;
double_t lhi = asdouble (asuint64 (hi) & -1ULL << 27);
double_t llo = hi - lhi + lo;
ehi = yhi * lhi;
elo = ylo * lhi + y * llo; /* |elo| < |ehi| * 2^-25. */
#endif
return exp_inline (ehi, elo, sign_bias);
}
#ifndef __pow
strong_alias (__pow, __ieee754_pow)
libm_alias_finite (__ieee754_pow, __pow)
# if LIBM_SVID_COMPAT
versioned_symbol (libm, __pow, pow, GLIBC_2_29);
libm_alias_double_other (__pow, pow)
# else
libm_alias_double (__pow, pow)
# endif
#endif