glibc/sysdeps/ieee754/ldbl-96/e_lgammal_r.c
Joseph Myers e44acb2063 Use floor functions not __floor functions in glibc libm.
Similar to the changes that were made to call sqrt functions directly
in glibc, instead of __ieee754_sqrt variants, so that the compiler
could inline them automatically without needing special inline
definitions in lots of math_private.h headers, this patch makes libm
code call floor functions directly instead of __floor variants,
removing the inlines / macros for x86_64 (SSE4.1) and powerpc
(POWER5).

The redirection used to ensure that __ieee754_sqrt does still get
called when the compiler doesn't inline a built-in function expansion
is refactored so it can be applied to other functions; the refactoring
is arranged so it's not limited to unary functions either (it would be
reasonable to use this mechanism for copysign - removing the inline in
math_private_calls.h but also eliminating unnecessary local PLT entry
use in the cases (powerpc soft-float and e500v1, for IBM long double)
where copysign calls don't get inlined).

The point of this change is that more architectures can get floor
calls inlined where they weren't previously (AArch64, for example),
without needing special inline definitions in their math_private.h,
and existing such definitions in math_private.h headers can be
removed.

Note that it's possible that in some cases an inline may be used where
an IFUNC call was previously used - this is the case on x86_64, for
example.  I think the direct calls to floor are still appropriate; if
there's any significant performance cost from inline SSE2 floor
instead of an IFUNC call ending up with SSE4.1 floor, that indicates
that either the function should be doing something else that's faster
than using floor at all, or it should itself have IFUNC variants, or
that the compiler choice of inlining for generic tuning should change
to allow for the possibility that, by not inlining, an SSE4.1 IFUNC
might be called at runtime - but not that glibc should avoid calling
floor internally.  (After all, all the same considerations would apply
to any user program calling floor, where it might either be inlined or
left as an out-of-line call allowing for a possible IFUNC.)

Tested for x86_64, and with build-many-glibcs.py.

	* include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ &&
	__FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT):
	New macro.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT.
	[!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0)
	&& !NO_MATH_REDIRECT] (floor): Likewise.
	* sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before
	header inclusion.
	* sysdeps/aarch64/fpu/s_floorf.c: Likewise.
	* sysdeps/ieee754/dbl-64/s_floor.c: Likewise.
	* sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise.
	* sysdeps/ieee754/float128/s_floorf128.c: Likewise.
	* sysdeps/ieee754/flt-32/s_floorf.c: Likewise.
	* sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise.
	* sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise.
	* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/riscv/rv64/rvd/s_floor.c: Likewise.
	* sysdeps/riscv/rvf/s_floorf.c: Likewise.
	* sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise.
	* sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise.
	* sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor):
	Remove macro.
	[_ARCH_PWR5X] (__floorf): Likewise.
	* sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove
	inline function.
	[__SSE4_1__] (__floorf): Likewise.
	* math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions
	instead of __floor variants.
	* math/w_lgamma_r_compat.c (__lgamma_r): Likewise.
	* math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise.
	* math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise.
	* math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise.
	* math/w_lgammal_r_compat.c (__lgammal_r): Likewise.
	* math/w_tgamma_compat.c (__tgamma): Likewise.
	* math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise.
	* math/w_tgammaf_compat.c (__tgammaf): Likewise.
	* math/w_tgammal_compat.c (__tgammal): Likewise.
	* sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise.
	* sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2):
	Likewise.
	* sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise.
	* sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise.
	* sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise.
	* sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl):
	Likewise.
	* sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl):
	Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise.
	* sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise.
	* sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise.
	* sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise.
	* sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise.
	* sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
2018-09-14 13:09:01 +00:00

440 lines
13 KiB
C

/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/* Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
/* __ieee754_lgammal_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method:
* 1. Argument Reduction for 0 < x <= 8
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
* reduce x to a number in [1.5,2.5] by
* lgamma(1+s) = log(s) + lgamma(s)
* for example,
* lgamma(7.3) = log(6.3) + lgamma(6.3)
* = log(6.3*5.3) + lgamma(5.3)
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
* 2. Polynomial approximation of lgamma around its
* minimun ymin=1.461632144968362245 to maintain monotonicity.
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
* Let z = x-ymin;
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
* 2. Rational approximation in the primary interval [2,3]
* We use the following approximation:
* s = x-2.0;
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
* Our algorithms are based on the following observation
*
* zeta(2)-1 2 zeta(3)-1 3
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
* 2 3
*
* where Euler = 0.5771... is the Euler constant, which is very
* close to 0.5.
*
* 3. For x>=8, we have
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
* (better formula:
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
* Let z = 1/x, then we approximation
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
* by
* 3 5 11
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
*
* 4. For negative x, since (G is gamma function)
* -x*G(-x)*G(x) = pi/sin(pi*x),
* we have
* G(x) = pi/(sin(pi*x)*(-x)*G(-x))
* since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
* Hence, for x<0, signgam = sign(sin(pi*x)) and
* lgamma(x) = log(|Gamma(x)|)
* = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
* Note: one should avoid compute pi*(-x) directly in the
* computation of sin(pi*(-x)).
*
* 5. Special Cases
* lgamma(2+s) ~ s*(1-Euler) for tiny s
* lgamma(1)=lgamma(2)=0
* lgamma(x) ~ -log(x) for tiny x
* lgamma(0) = lgamma(inf) = inf
* lgamma(-integer) = +-inf
*
*/
#include <math.h>
#include <math_private.h>
#include <libc-diag.h>
static const long double
half = 0.5L,
one = 1.0L,
pi = 3.14159265358979323846264L,
two63 = 9.223372036854775808e18L,
/* lgam(1+x) = 0.5 x + x a(x)/b(x)
-0.268402099609375 <= x <= 0
peak relative error 6.6e-22 */
a0 = -6.343246574721079391729402781192128239938E2L,
a1 = 1.856560238672465796768677717168371401378E3L,
a2 = 2.404733102163746263689288466865843408429E3L,
a3 = 8.804188795790383497379532868917517596322E2L,
a4 = 1.135361354097447729740103745999661157426E2L,
a5 = 3.766956539107615557608581581190400021285E0L,
b0 = 8.214973713960928795704317259806842490498E3L,
b1 = 1.026343508841367384879065363925870888012E4L,
b2 = 4.553337477045763320522762343132210919277E3L,
b3 = 8.506975785032585797446253359230031874803E2L,
b4 = 6.042447899703295436820744186992189445813E1L,
/* b5 = 1.000000000000000000000000000000000000000E0 */
tc = 1.4616321449683623412626595423257213284682E0L,
tf = -1.2148629053584961146050602565082954242826E-1,/* double precision */
/* tt = (tail of tf), i.e. tf + tt has extended precision. */
tt = 3.3649914684731379602768989080467587736363E-18L,
/* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
-1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
/* lgam (x + tc) = tf + tt + x g(x)/h(x)
- 0.230003726999612341262659542325721328468 <= x
<= 0.2699962730003876587373404576742786715318
peak relative error 2.1e-21 */
g0 = 3.645529916721223331888305293534095553827E-18L,
g1 = 5.126654642791082497002594216163574795690E3L,
g2 = 8.828603575854624811911631336122070070327E3L,
g3 = 5.464186426932117031234820886525701595203E3L,
g4 = 1.455427403530884193180776558102868592293E3L,
g5 = 1.541735456969245924860307497029155838446E2L,
g6 = 4.335498275274822298341872707453445815118E0L,
h0 = 1.059584930106085509696730443974495979641E4L,
h1 = 2.147921653490043010629481226937850618860E4L,
h2 = 1.643014770044524804175197151958100656728E4L,
h3 = 5.869021995186925517228323497501767586078E3L,
h4 = 9.764244777714344488787381271643502742293E2L,
h5 = 6.442485441570592541741092969581997002349E1L,
/* h6 = 1.000000000000000000000000000000000000000E0 */
/* lgam (x+1) = -0.5 x + x u(x)/v(x)
-0.100006103515625 <= x <= 0.231639862060546875
peak relative error 1.3e-21 */
u0 = -8.886217500092090678492242071879342025627E1L,
u1 = 6.840109978129177639438792958320783599310E2L,
u2 = 2.042626104514127267855588786511809932433E3L,
u3 = 1.911723903442667422201651063009856064275E3L,
u4 = 7.447065275665887457628865263491667767695E2L,
u5 = 1.132256494121790736268471016493103952637E2L,
u6 = 4.484398885516614191003094714505960972894E0L,
v0 = 1.150830924194461522996462401210374632929E3L,
v1 = 3.399692260848747447377972081399737098610E3L,
v2 = 3.786631705644460255229513563657226008015E3L,
v3 = 1.966450123004478374557778781564114347876E3L,
v4 = 4.741359068914069299837355438370682773122E2L,
v5 = 4.508989649747184050907206782117647852364E1L,
/* v6 = 1.000000000000000000000000000000000000000E0 */
/* lgam (x+2) = .5 x + x s(x)/r(x)
0 <= x <= 1
peak relative error 7.2e-22 */
s0 = 1.454726263410661942989109455292824853344E6L,
s1 = -3.901428390086348447890408306153378922752E6L,
s2 = -6.573568698209374121847873064292963089438E6L,
s3 = -3.319055881485044417245964508099095984643E6L,
s4 = -7.094891568758439227560184618114707107977E5L,
s5 = -6.263426646464505837422314539808112478303E4L,
s6 = -1.684926520999477529949915657519454051529E3L,
r0 = -1.883978160734303518163008696712983134698E7L,
r1 = -2.815206082812062064902202753264922306830E7L,
r2 = -1.600245495251915899081846093343626358398E7L,
r3 = -4.310526301881305003489257052083370058799E6L,
r4 = -5.563807682263923279438235987186184968542E5L,
r5 = -3.027734654434169996032905158145259713083E4L,
r6 = -4.501995652861105629217250715790764371267E2L,
/* r6 = 1.000000000000000000000000000000000000000E0 */
/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
x >= 8
Peak relative error 1.51e-21
w0 = LS2PI - 0.5 */
w0 = 4.189385332046727417803e-1L,
w1 = 8.333333333333331447505E-2L,
w2 = -2.777777777750349603440E-3L,
w3 = 7.936507795855070755671E-4L,
w4 = -5.952345851765688514613E-4L,
w5 = 8.412723297322498080632E-4L,
w6 = -1.880801938119376907179E-3L,
w7 = 4.885026142432270781165E-3L;
static const long double zero = 0.0L;
static long double
sin_pi (long double x)
{
long double y, z;
int n, ix;
uint32_t se, i0, i1;
GET_LDOUBLE_WORDS (se, i0, i1, x);
ix = se & 0x7fff;
ix = (ix << 16) | (i0 >> 16);
if (ix < 0x3ffd8000) /* 0.25 */
return __sinl (pi * x);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = floorl (y);
if (z != y)
{ /* inexact anyway */
y *= 0.5;
y = 2.0*(y - floorl(y)); /* y = |x| mod 2.0 */
n = (int) (y*4.0);
}
else
{
if (ix >= 0x403f8000) /* 2^64 */
{
y = zero; n = 0; /* y must be even */
}
else
{
if (ix < 0x403e8000) /* 2^63 */
z = y + two63; /* exact */
GET_LDOUBLE_WORDS (se, i0, i1, z);
n = i1 & 1;
y = n;
n <<= 2;
}
}
switch (n)
{
case 0:
y = __sinl (pi * y);
break;
case 1:
case 2:
y = __cosl (pi * (half - y));
break;
case 3:
case 4:
y = __sinl (pi * (one - y));
break;
case 5:
case 6:
y = -__cosl (pi * (y - 1.5));
break;
default:
y = __sinl (pi * (y - 2.0));
break;
}
return -y;
}
long double
__ieee754_lgammal_r (long double x, int *signgamp)
{
long double t, y, z, nadj, p, p1, p2, q, r, w;
int i, ix;
uint32_t se, i0, i1;
*signgamp = 1;
GET_LDOUBLE_WORDS (se, i0, i1, x);
ix = se & 0x7fff;
if (__builtin_expect((ix | i0 | i1) == 0, 0))
{
if (se & 0x8000)
*signgamp = -1;
return one / fabsl (x);
}
ix = (ix << 16) | (i0 >> 16);
/* purge off +-inf, NaN, +-0, and negative arguments */
if (__builtin_expect(ix >= 0x7fff0000, 0))
return x * x;
if (__builtin_expect(ix < 0x3fc08000, 0)) /* 2^-63 */
{ /* |x|<2**-63, return -log(|x|) */
if (se & 0x8000)
{
*signgamp = -1;
return -__ieee754_logl (-x);
}
else
return -__ieee754_logl (x);
}
if (se & 0x8000)
{
if (x < -2.0L && x > -33.0L)
return __lgamma_negl (x, signgamp);
t = sin_pi (x);
if (t == zero)
return one / fabsl (t); /* -integer */
nadj = __ieee754_logl (pi / fabsl (t * x));
if (t < zero)
*signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if ((((ix - 0x3fff8000) | i0 | i1) == 0)
|| (((ix - 0x40008000) | i0 | i1) == 0))
r = 0;
else if (ix < 0x40008000) /* 2.0 */
{
/* x < 2.0 */
if (ix <= 0x3ffee666) /* 8.99993896484375e-1 */
{
/* lgamma(x) = lgamma(x+1) - log(x) */
r = -__ieee754_logl (x);
if (ix >= 0x3ffebb4a) /* 7.31597900390625e-1 */
{
y = x - one;
i = 0;
}
else if (ix >= 0x3ffced33)/* 2.31639862060546875e-1 */
{
y = x - (tc - one);
i = 1;
}
else
{
/* x < 0.23 */
y = x;
i = 2;
}
}
else
{
r = zero;
if (ix >= 0x3fffdda6) /* 1.73162841796875 */
{
/* [1.7316,2] */
y = x - 2.0;
i = 0;
}
else if (ix >= 0x3fff9da6)/* 1.23162841796875 */
{
/* [1.23,1.73] */
y = x - tc;
i = 1;
}
else
{
/* [0.9, 1.23] */
y = x - one;
i = 2;
}
}
switch (i)
{
case 0:
p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
r += half * y + y * p1/p2;
break;
case 1:
p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
p = tt + y * p1/p2;
r += (tf + p);
break;
case 2:
p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
r += (-half * y + p1 / p2);
}
}
else if (ix < 0x40028000) /* 8.0 */
{
/* x < 8.0 */
i = (int) x;
t = zero;
y = x - (double) i;
p = y *
(s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
r = half * y + p / q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch (i)
{
case 7:
z *= (y + 6.0); /* FALLTHRU */
case 6:
z *= (y + 5.0); /* FALLTHRU */
case 5:
z *= (y + 4.0); /* FALLTHRU */
case 4:
z *= (y + 3.0); /* FALLTHRU */
case 3:
z *= (y + 2.0); /* FALLTHRU */
r += __ieee754_logl (z);
break;
}
}
else if (ix < 0x40418000) /* 2^66 */
{
/* 8.0 <= x < 2**66 */
t = __ieee754_logl (x);
z = one / x;
y = z * z;
w = w0 + z * (w1
+ y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
r = (x - half) * (t - one) + w;
}
else
/* 2**66 <= x <= inf */
r = x * (__ieee754_logl (x) - one);
/* NADJ is set for negative arguments but not otherwise, resulting
in warnings that it may be used uninitialized although in the
cases where it is used it has always been set. */
DIAG_PUSH_NEEDS_COMMENT;
DIAG_IGNORE_NEEDS_COMMENT (4.9, "-Wmaybe-uninitialized");
if (se & 0x8000)
r = nadj - r;
DIAG_POP_NEEDS_COMMENT;
return r;
}
strong_alias (__ieee754_lgammal_r, __lgammal_r_finite)