mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-22 10:50:07 +00:00
709 lines
22 KiB
C
709 lines
22 KiB
C
/* Machine-dependent ELF dynamic relocation inline functions. MIPS version.
|
|
Copyright (C) 1996, 1997, 1998, 1999, 2000 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Kazumoto Kojima <kkojima@info.kanagawa-u.ac.jp>.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Library General Public License as
|
|
published by the Free Software Foundation; either version 2 of the
|
|
License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Library General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Library General Public
|
|
License along with the GNU C Library; see the file COPYING.LIB. If not,
|
|
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
/* FIXME: Profiling of shared libraries is not implemented yet. */
|
|
#ifndef dl_machine_h
|
|
#define dl_machine_h
|
|
|
|
#define ELF_MACHINE_NAME "MIPS"
|
|
|
|
#define ELF_MACHINE_NO_PLT
|
|
|
|
#include <entry.h>
|
|
|
|
#ifndef ENTRY_POINT
|
|
#error ENTRY_POINT needs to be defined for MIPS.
|
|
#endif
|
|
|
|
/* The offset of gp from GOT might be system-dependent. It's set by
|
|
ld. The same value is also */
|
|
#define OFFSET_GP_GOT 0x7ff0
|
|
|
|
#ifndef _RTLD_PROLOGUE
|
|
# define _RTLD_PROLOGUE(entry) \
|
|
".globl\t" __STRING(entry) "\n\t" \
|
|
".ent\t" __STRING(entry) "\n\t" \
|
|
".type\t" __STRING(entry) ", @function\n" \
|
|
__STRING(entry) ":\n\t"
|
|
#endif
|
|
|
|
#ifndef _RTLD_EPILOGUE
|
|
# define _RTLD_EPILOGUE(entry) \
|
|
".end\t" __STRING(entry) "\n\t" \
|
|
".size\t" __STRING(entry) ", . - " __STRING(entry) "\n\t"
|
|
#endif
|
|
|
|
/* A reloc type used for ld.so cmdline arg lookups to reject PLT entries.
|
|
This makes no sense on MIPS but we have to define this to R_MIPS_REL32
|
|
to avoid the asserts in dl-lookup.c from blowing. */
|
|
#define ELF_MACHINE_JMP_SLOT R_MIPS_REL32
|
|
#define elf_machine_lookup_noplt_p(type) (1)
|
|
#define elf_machine_lookup_noexec_p(type) (0)
|
|
|
|
/* Translate a processor specific dynamic tag to the index
|
|
in l_info array. */
|
|
#define DT_MIPS(x) (DT_MIPS_##x - DT_LOPROC + DT_NUM)
|
|
|
|
/*
|
|
* MIPS libraries are usually linked to a non-zero base address. We
|
|
* subtract the base address from the address where we map the object
|
|
* to. This results in more efficient address space usage.
|
|
*
|
|
* FIXME: By the time when MAP_BASE_ADDR is called we don't have the
|
|
* DYNAMIC section read. Until this is fixed make the assumption that
|
|
* libraries have their base address at 0x5ffe0000. This needs to be
|
|
* fixed before we can safely get rid of this MIPSism.
|
|
*/
|
|
#if 0
|
|
#define MAP_BASE_ADDR(l) ((l)->l_info[DT_MIPS(BASE_ADDRESS)] ? \
|
|
(l)->l_info[DT_MIPS(BASE_ADDRESS)]->d_un.d_ptr : 0)
|
|
#else
|
|
#define MAP_BASE_ADDR(l) 0x5ffe0000
|
|
#endif
|
|
|
|
/* If there is a DT_MIPS_RLD_MAP entry in the dynamic section, fill it in
|
|
with the run-time address of the r_debug structure */
|
|
#define ELF_MACHINE_DEBUG_SETUP(l,r) \
|
|
do { if ((l)->l_info[DT_MIPS (RLD_MAP)]) \
|
|
*(ElfW(Addr) *)((l)->l_info[DT_MIPS (RLD_MAP)]->d_un.d_ptr) = \
|
|
(ElfW(Addr)) (r); \
|
|
} while (0)
|
|
|
|
/* Return nonzero iff ELF header is compatible with the running host. */
|
|
static inline int __attribute__ ((unused))
|
|
elf_machine_matches_host (const ElfW(Ehdr) *ehdr)
|
|
{
|
|
switch (ehdr->e_machine)
|
|
{
|
|
case EM_MIPS:
|
|
case EM_MIPS_RS3_LE:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline ElfW(Addr) *
|
|
elf_mips_got_from_gpreg (ElfW(Addr) gpreg)
|
|
{
|
|
/* FIXME: the offset of gp from GOT may be system-dependent. */
|
|
return (ElfW(Addr) *) (gpreg - OFFSET_GP_GOT);
|
|
}
|
|
|
|
/* Return the link-time address of _DYNAMIC. Conveniently, this is the
|
|
first element of the GOT. This must be inlined in a function which
|
|
uses global data. */
|
|
static inline ElfW(Addr)
|
|
elf_machine_dynamic (void)
|
|
{
|
|
register ElfW(Addr) gp __asm__ ("$28");
|
|
return *elf_mips_got_from_gpreg (gp);
|
|
}
|
|
|
|
|
|
/* Return the run-time load address of the shared object. */
|
|
static inline ElfW(Addr)
|
|
elf_machine_load_address (void)
|
|
{
|
|
ElfW(Addr) addr;
|
|
asm (" .set noreorder\n"
|
|
" la %0, here\n"
|
|
" bltzal $0, here\n"
|
|
" nop\n"
|
|
"here: subu %0, $31, %0\n"
|
|
" .set reorder\n"
|
|
: "=r" (addr)
|
|
: /* No inputs */
|
|
: "$31");
|
|
return addr;
|
|
}
|
|
|
|
/* The MSB of got[1] of a gnu object is set to identify gnu objects. */
|
|
#define ELF_MIPS_GNU_GOT1_MASK 0x80000000
|
|
|
|
/* We can't rely on elf_machine_got_rel because _dl_object_relocation_scope
|
|
fiddles with global data. */
|
|
#define ELF_MACHINE_BEFORE_RTLD_RELOC(dynamic_info) \
|
|
do { \
|
|
struct link_map *map = &bootstrap_map; \
|
|
ElfW(Sym) *sym; \
|
|
ElfW(Addr) *got; \
|
|
int i, n; \
|
|
\
|
|
got = (ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]); \
|
|
\
|
|
if (__builtin_expect (map->l_addr == 0, 1)) \
|
|
goto done; \
|
|
\
|
|
/* got[0] is reserved. got[1] is also reserved for the dynamic object \
|
|
generated by gnu ld. Skip these reserved entries from \
|
|
relocation. */ \
|
|
i = (got[1] & ELF_MIPS_GNU_GOT1_MASK)? 2 : 1; \
|
|
n = map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val; \
|
|
\
|
|
/* Add the run-time displacement to all local got entries. */ \
|
|
while (i < n) \
|
|
got[i++] += map->l_addr; \
|
|
\
|
|
/* Handle global got entries. */ \
|
|
got += n; \
|
|
sym = (ElfW(Sym) *) D_PTR(map, l_info[DT_SYMTAB]) \
|
|
+ map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val; \
|
|
i = (map->l_info[DT_MIPS (SYMTABNO)]->d_un.d_val \
|
|
- map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val); \
|
|
\
|
|
while (i--) \
|
|
{ \
|
|
if (sym->st_shndx == SHN_UNDEF || sym->st_shndx == SHN_COMMON) \
|
|
*got = map->l_addr + sym->st_value; \
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC \
|
|
&& *got != sym->st_value) \
|
|
*got += map->l_addr; \
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_SECTION) \
|
|
{ \
|
|
if (sym->st_other == 0) \
|
|
*got += map->l_addr; \
|
|
} \
|
|
else \
|
|
*got = map->l_addr + sym->st_value; \
|
|
\
|
|
got++; \
|
|
sym++; \
|
|
} \
|
|
done: \
|
|
} while(0)
|
|
|
|
|
|
/* Get link map for callers object containing STUB_PC. */
|
|
static inline struct link_map *
|
|
elf_machine_runtime_link_map (ElfW(Addr) gpreg, ElfW(Addr) stub_pc)
|
|
{
|
|
extern int _dl_mips_gnu_objects;
|
|
|
|
/* got[1] is reserved to keep its link map address for the shared
|
|
object generated by the gnu linker. If all are such objects, we
|
|
can find the link map from current GPREG simply. If not so, get
|
|
the link map for caller's object containing STUB_PC. */
|
|
|
|
if (_dl_mips_gnu_objects)
|
|
{
|
|
ElfW(Addr) *got = elf_mips_got_from_gpreg (gpreg);
|
|
ElfW(Word) g1;
|
|
|
|
g1 = ((ElfW(Word) *) got)[1];
|
|
|
|
if ((g1 & ELF_MIPS_GNU_GOT1_MASK) != 0)
|
|
{
|
|
struct link_map *l =
|
|
(struct link_map *) (g1 & ~ELF_MIPS_GNU_GOT1_MASK);
|
|
ElfW(Addr) base, limit;
|
|
const ElfW(Phdr) *p = l->l_phdr;
|
|
ElfW(Half) this, nent = l->l_phnum;
|
|
|
|
/* For the common case of a stub being called from the containing
|
|
object, STUB_PC will point to somewhere within the object that
|
|
is described by the link map fetched via got[1]. Otherwise we
|
|
have to scan all maps. */
|
|
for (this = 0; this < nent; this++)
|
|
{
|
|
if (p[this].p_type == PT_LOAD)
|
|
{
|
|
base = p[this].p_vaddr + l->l_addr;
|
|
limit = base + p[this].p_memsz;
|
|
if (stub_pc >= base && stub_pc < limit)
|
|
return l;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
struct link_map *l = _dl_loaded;
|
|
|
|
while (l)
|
|
{
|
|
ElfW(Addr) base, limit;
|
|
const ElfW(Phdr) *p = l->l_phdr;
|
|
ElfW(Half) this, nent = l->l_phnum;
|
|
|
|
for (this = 0; this < nent; ++this)
|
|
{
|
|
if (p[this].p_type == PT_LOAD)
|
|
{
|
|
base = p[this].p_vaddr + l->l_addr;
|
|
limit = base + p[this].p_memsz;
|
|
if (stub_pc >= base && stub_pc < limit)
|
|
return l;
|
|
}
|
|
}
|
|
l = l->l_next;
|
|
}
|
|
}
|
|
|
|
_dl_signal_error (0, NULL, "cannot find runtime link map");
|
|
return NULL;
|
|
}
|
|
|
|
/* Define mips specific runtime resolver. The function __dl_runtime_resolve
|
|
is called from assembler function _dl_runtime_resolve which converts
|
|
special argument registers t7 ($15) and t8 ($24):
|
|
t7 address to return to the caller of the function
|
|
t8 index for this function symbol in .dynsym
|
|
to usual c arguments.
|
|
|
|
Other architectures call fixup from dl-runtime.c in
|
|
_dl_runtime_resolve. MIPS instead calls __dl_runtime_resolve. We
|
|
have to use our own version because of the way the got section is
|
|
treated on MIPS (we've also got ELF_MACHINE_PLT defined). */
|
|
|
|
#define ELF_MACHINE_RUNTIME_TRAMPOLINE \
|
|
/* The flag _dl_mips_gnu_objects is set if all dynamic objects are \
|
|
generated by the gnu linker. */ \
|
|
int _dl_mips_gnu_objects = 1; \
|
|
\
|
|
/* This is called from assembly stubs below which the compiler can't see. */ \
|
|
static ElfW(Addr) \
|
|
__dl_runtime_resolve (ElfW(Word), ElfW(Word), ElfW(Addr), ElfW(Addr)) \
|
|
__attribute__ ((unused)); \
|
|
\
|
|
static ElfW(Addr) \
|
|
__dl_runtime_resolve (ElfW(Word) sym_index, \
|
|
ElfW(Word) return_address, \
|
|
ElfW(Addr) old_gpreg, \
|
|
ElfW(Addr) stub_pc) \
|
|
{ \
|
|
struct link_map *l = elf_machine_runtime_link_map (old_gpreg, stub_pc); \
|
|
const ElfW(Sym) *const symtab \
|
|
= (const void *) D_PTR (l, l_info[DT_SYMTAB]); \
|
|
const char *strtab \
|
|
= (const void *) D_PTR (l, l_info[DT_STRTAB]); \
|
|
const ElfW(Addr) *got \
|
|
= (const ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]); \
|
|
const ElfW(Word) local_gotno \
|
|
= (const ElfW(Word)) l->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val; \
|
|
const ElfW(Word) gotsym \
|
|
= (const ElfW(Word)) l->l_info[DT_MIPS (GOTSYM)]->d_un.d_val; \
|
|
const ElfW(Sym) *sym = &symtab[sym_index]; \
|
|
ElfW(Addr) value; \
|
|
\
|
|
/* FIXME: The symbol versioning stuff is not tested yet. */ \
|
|
if (__builtin_expect (ELFW(ST_VISIBILITY) (sym->st_other), 0) == 0) \
|
|
{ \
|
|
switch (l->l_info[VERSYMIDX (DT_VERSYM)] != NULL) \
|
|
{ \
|
|
default: \
|
|
{ \
|
|
const ElfW(Half) *vernum = \
|
|
(const void *) D_PTR (l, l_info[VERSYMIDX (DT_VERSYM)]); \
|
|
ElfW(Half) ndx = vernum[sym_index]; \
|
|
const struct r_found_version *version = &l->l_versions[ndx]; \
|
|
\
|
|
if (version->hash != 0) \
|
|
{ \
|
|
value = _dl_lookup_versioned_symbol(strtab + sym->st_name, l, \
|
|
&sym, l->l_scope, version,\
|
|
R_MIPS_REL32, 0); \
|
|
break; \
|
|
} \
|
|
/* Fall through. */ \
|
|
} \
|
|
case 0: \
|
|
value = _dl_lookup_symbol (strtab + sym->st_name, l, &sym, \
|
|
l->l_scope, R_MIPS_REL32, 0); \
|
|
} \
|
|
\
|
|
/* Currently value contains the base load address of the object \
|
|
that defines sym. Now add in the symbol offset. */ \
|
|
value = (sym ? value + sym->st_value : 0); \
|
|
} \
|
|
else \
|
|
/* We already found the symbol. The module (and therefore its load \
|
|
address) is also known. */ \
|
|
value = l->l_addr + sym->st_value; \
|
|
\
|
|
/* Apply the relocation with that value. */ \
|
|
*(got + local_gotno + sym_index - gotsym) = value; \
|
|
\
|
|
return value; \
|
|
} \
|
|
\
|
|
asm ("\n \
|
|
.text\n \
|
|
.align 2\n \
|
|
.globl _dl_runtime_resolve\n \
|
|
.type _dl_runtime_resolve,@function\n \
|
|
.ent _dl_runtime_resolve\n \
|
|
_dl_runtime_resolve:\n \
|
|
.frame $29, 40, $31\n \
|
|
.set noreorder\n \
|
|
# Save GP.\n \
|
|
move $3, $28\n \
|
|
# Modify t9 ($25) so as to point .cpload instruction.\n \
|
|
addu $25, 8\n \
|
|
# Compute GP.\n \
|
|
.cpload $25\n \
|
|
.set reorder\n \
|
|
# Save slot call pc.\n \
|
|
move $2, $31\n \
|
|
# Save arguments and sp value in stack.\n \
|
|
subu $29, 40\n \
|
|
.cprestore 32\n \
|
|
sw $15, 36($29)\n \
|
|
sw $4, 16($29)\n \
|
|
sw $5, 20($29)\n \
|
|
sw $6, 24($29)\n \
|
|
sw $7, 28($29)\n \
|
|
move $4, $24\n \
|
|
move $5, $15\n \
|
|
move $6, $3\n \
|
|
move $7, $2\n \
|
|
jal __dl_runtime_resolve\n \
|
|
lw $31, 36($29)\n \
|
|
lw $4, 16($29)\n \
|
|
lw $5, 20($29)\n \
|
|
lw $6, 24($29)\n \
|
|
lw $7, 28($29)\n \
|
|
addu $29, 40\n \
|
|
move $25, $2\n \
|
|
jr $25\n \
|
|
.end _dl_runtime_resolve\n \
|
|
.previous\n \
|
|
");
|
|
|
|
/* Mask identifying addresses reserved for the user program,
|
|
where the dynamic linker should not map anything. */
|
|
#define ELF_MACHINE_USER_ADDRESS_MASK 0x80000000UL
|
|
|
|
|
|
|
|
/* Initial entry point code for the dynamic linker.
|
|
The C function `_dl_start' is the real entry point;
|
|
its return value is the user program's entry point.
|
|
Note how we have to be careful about two things:
|
|
|
|
1) That we allocate a minimal stack of 24 bytes for
|
|
every function call, the MIPS ABI states that even
|
|
if all arguments are passed in registers the procedure
|
|
called can use the 16 byte area pointed to by $sp
|
|
when it is called to store away the arguments passed
|
|
to it.
|
|
|
|
2) That under Linux the entry is named __start
|
|
and not just plain _start. */
|
|
|
|
#define RTLD_START asm (\
|
|
".text\n"\
|
|
_RTLD_PROLOGUE(ENTRY_POINT)\
|
|
".set noreorder\n\
|
|
.set noreorder\n\
|
|
bltzal $0, 0f\n\
|
|
nop\n\
|
|
0: .cpload $31\n\
|
|
.set reorder\n\
|
|
# i386 ABI book says that the first entry of GOT holds\n\
|
|
# the address of the dynamic structure. Though MIPS ABI\n\
|
|
# doesn't say nothing about this, I emulate this here.\n\
|
|
la $4, _DYNAMIC\n\
|
|
# Subtract OFFSET_GP_GOT\n\
|
|
sw $4, -0x7ff0($28)\n\
|
|
move $4, $29\n\
|
|
subu $29, 16\n\
|
|
\n\
|
|
la $8, coff\n\
|
|
bltzal $8, coff\n\
|
|
coff: subu $8, $31, $8\n\
|
|
\n\
|
|
la $25, _dl_start\n\
|
|
addu $25, $8\n\
|
|
jalr $25\n\
|
|
\n\
|
|
addiu $29, 16\n\
|
|
# Get the value of label '_dl_start_user' in t9 ($25).\n\
|
|
la $25, _dl_start_user\n\
|
|
.globl _dl_start_user\n\
|
|
_dl_start_user:\n\
|
|
.set noreorder\n\
|
|
.cpload $25\n\
|
|
.set reorder\n\
|
|
move $16, $28\n\
|
|
# Save the user entry point address in a saved register.\n\
|
|
move $17, $2\n\
|
|
# Store the highest stack address\n\
|
|
sw $29, __libc_stack_end\n\
|
|
# See if we were run as a command with the executable file\n\
|
|
# name as an extra leading argument.\n\
|
|
lw $2, _dl_skip_args\n\
|
|
beq $2, $0, 1f\n\
|
|
# Load the original argument count.\n\
|
|
lw $4, 0($29)\n\
|
|
# Subtract _dl_skip_args from it.\n\
|
|
subu $4, $2\n\
|
|
# Adjust the stack pointer to skip _dl_skip_args words.\n\
|
|
sll $2, 2\n\
|
|
addu $29, $2\n\
|
|
# Save back the modified argument count.\n\
|
|
sw $4, 0($29)\n\
|
|
1: # Call _dl_init (struct link_map *main_map, int argc, char **argv, char **env) \n\
|
|
lw $4, _dl_loaded\n\
|
|
lw $5, 0($29)\n\
|
|
la $6, 4($29)\n\
|
|
sll $7, $5, 2\n\
|
|
addu $7, $7, $6\n\
|
|
addu $7, $7, 4\n\
|
|
subu $29, 16\n\
|
|
# Call the function to run the initializers.\n\
|
|
jal _dl_init
|
|
addiu $29, 16\n\
|
|
# Pass our finalizer function to the user in $2 as per ELF ABI.\n\
|
|
la $2, _dl_fini\n\
|
|
# Jump to the user entry point.\n\
|
|
move $25, $17\n\
|
|
jr $25\n\t"\
|
|
_RTLD_EPILOGUE(ENTRY_POINT)\
|
|
".previous"\
|
|
);
|
|
|
|
/* The MIPS never uses Elfxx_Rela relocations. */
|
|
#define ELF_MACHINE_NO_RELA 1
|
|
|
|
#endif /* !dl_machine_h */
|
|
|
|
#ifdef RESOLVE
|
|
|
|
/* Perform the relocation specified by RELOC and SYM (which is fully resolved).
|
|
MAP is the object containing the reloc. */
|
|
|
|
static inline void
|
|
elf_machine_rel (struct link_map *map, const ElfW(Rel) *reloc,
|
|
const ElfW(Sym) *sym, const struct r_found_version *version,
|
|
ElfW(Addr) *const reloc_addr)
|
|
{
|
|
#ifndef RTLD_BOOTSTRAP
|
|
/* This is defined in rtld.c, but nowhere in the static libc.a;
|
|
make the reference weak so static programs can still link. This
|
|
declaration cannot be done when compiling rtld.c (i.e. #ifdef
|
|
RTLD_BOOTSTRAP) because rtld.c contains the common defn for
|
|
_dl_rtld_map, which is incompatible with a weak decl in the same
|
|
file. */
|
|
weak_extern (_dl_rtld_map);
|
|
#endif
|
|
|
|
switch (ELFW(R_TYPE) (reloc->r_info))
|
|
{
|
|
case R_MIPS_REL32:
|
|
{
|
|
int symidx = ELFW(R_SYM) (reloc->r_info);
|
|
|
|
if (symidx)
|
|
{
|
|
const ElfW(Word) gotsym
|
|
= (const ElfW(Word)) map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val;
|
|
|
|
if (symidx < gotsym)
|
|
{
|
|
#ifndef RTLD_BOOTSTRAP
|
|
if (map != &_dl_rtld_map)
|
|
#endif
|
|
*reloc_addr += sym->st_value + map->l_addr;
|
|
}
|
|
else
|
|
{
|
|
#ifndef RTLD_BOOTSTRAP
|
|
const ElfW(Addr) *got
|
|
= (const ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]);
|
|
const ElfW(Word) local_gotno
|
|
= (const ElfW(Word))
|
|
map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val;
|
|
|
|
*reloc_addr += got[symidx + local_gotno - gotsym];
|
|
#endif
|
|
}
|
|
}
|
|
else
|
|
#ifndef RTLD_BOOTSTRAP
|
|
if (map != &_dl_rtld_map)
|
|
#endif
|
|
*reloc_addr += map->l_addr;
|
|
}
|
|
break;
|
|
case R_MIPS_NONE: /* Alright, Wilbur. */
|
|
break;
|
|
default:
|
|
_dl_reloc_bad_type (map, ELFW(R_TYPE) (reloc->r_info), 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
elf_machine_lazy_rel (struct link_map *map,
|
|
ElfW(Addr) l_addr, const ElfW(Rel) *reloc)
|
|
{
|
|
/* Do nothing. */
|
|
}
|
|
|
|
/* Relocate GOT. */
|
|
static inline void
|
|
elf_machine_got_rel (struct link_map *map, int lazy)
|
|
{
|
|
ElfW(Addr) *got;
|
|
ElfW(Sym) *sym;
|
|
int i, n, symidx;
|
|
/* This function is loaded in dl-reloc as a nested function and can
|
|
therefore access the variables scope and strtab from
|
|
_dl_relocate_object. */
|
|
#ifdef RTLD_BOOTSTRAP
|
|
# define RESOLVE_GOTSYM(sym,sym_index) 0
|
|
#else
|
|
# define RESOLVE_GOTSYM(sym,sym_index) \
|
|
({ \
|
|
const ElfW(Sym) *ref = sym; \
|
|
ElfW(Addr) value; \
|
|
\
|
|
switch (map->l_info[VERSYMIDX (DT_VERSYM)] != NULL) \
|
|
{ \
|
|
default: \
|
|
{ \
|
|
const ElfW(Half) *vernum = \
|
|
(const void *) D_PTR (map, l_info[VERSYMIDX (DT_VERSYM)]); \
|
|
ElfW(Half) ndx = vernum[sym_index]; \
|
|
const struct r_found_version *version = &l->l_versions[ndx]; \
|
|
\
|
|
if (version->hash != 0) \
|
|
{ \
|
|
value = _dl_lookup_versioned_symbol(strtab + sym->st_name,\
|
|
map, \
|
|
&ref, scope, version, \
|
|
R_MIPS_REL32, 0); \
|
|
break; \
|
|
} \
|
|
/* Fall through. */ \
|
|
} \
|
|
case 0: \
|
|
value = _dl_lookup_symbol (strtab + sym->st_name, map, &ref, \
|
|
scope, R_MIPS_REL32, 0); \
|
|
} \
|
|
\
|
|
(ref)? value + ref->st_value: 0; \
|
|
})
|
|
#endif /* RTLD_BOOTSTRAP */
|
|
|
|
got = (ElfW(Addr) *) D_PTR (map, l_info[DT_PLTGOT]);
|
|
|
|
n = map->l_info[DT_MIPS (LOCAL_GOTNO)]->d_un.d_val;
|
|
/* The dynamic linker's local got entries have already been relocated. */
|
|
if (map != &_dl_rtld_map)
|
|
{
|
|
/* got[0] is reserved. got[1] is also reserved for the dynamic object
|
|
generated by gnu ld. Skip these reserved entries from relocation. */
|
|
i = (got[1] & ELF_MIPS_GNU_GOT1_MASK)? 2 : 1;
|
|
|
|
/* Add the run-time displacement to all local got entries if
|
|
needed. */
|
|
if (__builtin_expect (map->l_addr != 0, 0))
|
|
{
|
|
while (i < n)
|
|
got[i++] += map->l_addr;
|
|
}
|
|
}
|
|
|
|
/* Handle global got entries. */
|
|
got += n;
|
|
/* Keep track of the symbol index. */
|
|
symidx = map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val;
|
|
sym = (ElfW(Sym) *) D_PTR (map, l_info[DT_SYMTAB]) + symidx;
|
|
i = (map->l_info[DT_MIPS (SYMTABNO)]->d_un.d_val
|
|
- map->l_info[DT_MIPS (GOTSYM)]->d_un.d_val);
|
|
|
|
/* This loop doesn't handle Quickstart. */
|
|
while (i--)
|
|
{
|
|
if (sym->st_shndx == SHN_UNDEF)
|
|
{
|
|
if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC
|
|
&& sym->st_value && lazy)
|
|
*got = sym->st_value + map->l_addr;
|
|
else
|
|
*got = RESOLVE_GOTSYM (sym, symidx);
|
|
}
|
|
else if (sym->st_shndx == SHN_COMMON)
|
|
*got = RESOLVE_GOTSYM (sym, symidx);
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_FUNC
|
|
&& *got != sym->st_value
|
|
&& lazy)
|
|
*got += map->l_addr;
|
|
else if (ELFW(ST_TYPE) (sym->st_info) == STT_SECTION)
|
|
{
|
|
if (sym->st_other == 0)
|
|
*got += map->l_addr;
|
|
}
|
|
else
|
|
*got = RESOLVE_GOTSYM (sym, symidx);
|
|
|
|
++got;
|
|
++sym;
|
|
++symidx;
|
|
}
|
|
|
|
#undef RESOLVE_GOTSYM
|
|
|
|
return;
|
|
}
|
|
|
|
/* Set up the loaded object described by L so its stub function
|
|
will jump to the on-demand fixup code __dl_runtime_resolve. */
|
|
|
|
static inline int
|
|
elf_machine_runtime_setup (struct link_map *l, int lazy, int profile)
|
|
{
|
|
# ifndef RTLD_BOOTSTRAP
|
|
ElfW(Addr) *got;
|
|
extern void _dl_runtime_resolve (ElfW(Word));
|
|
extern int _dl_mips_gnu_objects;
|
|
|
|
if (lazy)
|
|
{
|
|
/* The GOT entries for functions have not yet been filled in.
|
|
Their initial contents will arrange when called to put an
|
|
offset into the .dynsym section in t8, the return address
|
|
in t7 and then jump to _GLOBAL_OFFSET_TABLE[0]. */
|
|
got = (ElfW(Addr) *) D_PTR (l, l_info[DT_PLTGOT]);
|
|
|
|
/* This function will get called to fix up the GOT entry indicated by
|
|
the register t8, and then jump to the resolved address. */
|
|
got[0] = (ElfW(Addr)) &_dl_runtime_resolve;
|
|
|
|
/* Store l to _GLOBAL_OFFSET_TABLE[1] for gnu object. The MSB
|
|
of got[1] of a gnu object is set to identify gnu objects.
|
|
Where we can store l for non gnu objects? XXX */
|
|
if ((got[1] & ELF_MIPS_GNU_GOT1_MASK) != 0)
|
|
got[1] = (ElfW(Addr)) ((unsigned) l | ELF_MIPS_GNU_GOT1_MASK);
|
|
else
|
|
_dl_mips_gnu_objects = 0;
|
|
}
|
|
|
|
/* Relocate global offset table. */
|
|
elf_machine_got_rel (l, lazy);
|
|
|
|
# endif
|
|
return lazy;
|
|
}
|
|
|
|
#endif /* RESOLVE */
|