mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-23 19:30:10 +00:00
718d34a309
The csqrt implementations in glibc can cause spurious underflows in some cases as a side-effect of the scaling for large arguments (when underflow is correct for the square root of the argument that was scaled down to avoid overflow, but not for the original argument). This patch arranges to avoid the underflowing intermediate computation (eliminating a multiplication in 0.5 in the problem cases where a subsequent scaling by 2 would follow). Tested for x86_64 and x86 and ulps updated accordingly (only needed for x86). [BZ #18371] * math/s_csqrt.c (__csqrt): Avoid multiplication by 0.5 where intermediate but not final result might underflow. * math/s_csqrtf.c (__csqrtf): Likewise. * math/s_csqrtl.c (__csqrtl): Likewise. * math/auto-libm-test-in: Add more tests of csqrt. * math/auto-libm-test-out: Regenerated. * sysdeps/i386/fpu/libm-test-ulps: Update.
163 lines
4.1 KiB
C
163 lines
4.1 KiB
C
/* Complex square root of double value.
|
|
Copyright (C) 1997-2015 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Based on an algorithm by Stephen L. Moshier <moshier@world.std.com>.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include <complex.h>
|
|
#include <math.h>
|
|
#include <math_private.h>
|
|
#include <float.h>
|
|
|
|
__complex__ double
|
|
__csqrt (__complex__ double x)
|
|
{
|
|
__complex__ double res;
|
|
int rcls = fpclassify (__real__ x);
|
|
int icls = fpclassify (__imag__ x);
|
|
|
|
if (__glibc_unlikely (rcls <= FP_INFINITE || icls <= FP_INFINITE))
|
|
{
|
|
if (icls == FP_INFINITE)
|
|
{
|
|
__real__ res = HUGE_VAL;
|
|
__imag__ res = __imag__ x;
|
|
}
|
|
else if (rcls == FP_INFINITE)
|
|
{
|
|
if (__real__ x < 0.0)
|
|
{
|
|
__real__ res = icls == FP_NAN ? __nan ("") : 0;
|
|
__imag__ res = __copysign (HUGE_VAL, __imag__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __real__ x;
|
|
__imag__ res = (icls == FP_NAN
|
|
? __nan ("") : __copysign (0.0, __imag__ x));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
__real__ res = __nan ("");
|
|
__imag__ res = __nan ("");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (__glibc_unlikely (icls == FP_ZERO))
|
|
{
|
|
if (__real__ x < 0.0)
|
|
{
|
|
__real__ res = 0.0;
|
|
__imag__ res = __copysign (__ieee754_sqrt (-__real__ x),
|
|
__imag__ x);
|
|
}
|
|
else
|
|
{
|
|
__real__ res = fabs (__ieee754_sqrt (__real__ x));
|
|
__imag__ res = __copysign (0.0, __imag__ x);
|
|
}
|
|
}
|
|
else if (__glibc_unlikely (rcls == FP_ZERO))
|
|
{
|
|
double r;
|
|
if (fabs (__imag__ x) >= 2.0 * DBL_MIN)
|
|
r = __ieee754_sqrt (0.5 * fabs (__imag__ x));
|
|
else
|
|
r = 0.5 * __ieee754_sqrt (2.0 * fabs (__imag__ x));
|
|
|
|
__real__ res = r;
|
|
__imag__ res = __copysign (r, __imag__ x);
|
|
}
|
|
else
|
|
{
|
|
double d, r, s;
|
|
int scale = 0;
|
|
|
|
if (fabs (__real__ x) > DBL_MAX / 4.0)
|
|
{
|
|
scale = 1;
|
|
__real__ x = __scalbn (__real__ x, -2 * scale);
|
|
__imag__ x = __scalbn (__imag__ x, -2 * scale);
|
|
}
|
|
else if (fabs (__imag__ x) > DBL_MAX / 4.0)
|
|
{
|
|
scale = 1;
|
|
if (fabs (__real__ x) >= 4.0 * DBL_MIN)
|
|
__real__ x = __scalbn (__real__ x, -2 * scale);
|
|
else
|
|
__real__ x = 0.0;
|
|
__imag__ x = __scalbn (__imag__ x, -2 * scale);
|
|
}
|
|
else if (fabs (__real__ x) < DBL_MIN
|
|
&& fabs (__imag__ x) < DBL_MIN)
|
|
{
|
|
scale = -(DBL_MANT_DIG / 2);
|
|
__real__ x = __scalbn (__real__ x, -2 * scale);
|
|
__imag__ x = __scalbn (__imag__ x, -2 * scale);
|
|
}
|
|
|
|
d = __ieee754_hypot (__real__ x, __imag__ x);
|
|
/* Use the identity 2 Re res Im res = Im x
|
|
to avoid cancellation error in d +/- Re x. */
|
|
if (__real__ x > 0)
|
|
{
|
|
r = __ieee754_sqrt (0.5 * (d + __real__ x));
|
|
if (scale == 1 && fabs (__imag__ x) < 1.0)
|
|
{
|
|
/* Avoid possible intermediate underflow. */
|
|
s = __imag__ x / r;
|
|
r = __scalbn (r, scale);
|
|
scale = 0;
|
|
}
|
|
else
|
|
s = 0.5 * (__imag__ x / r);
|
|
}
|
|
else
|
|
{
|
|
s = __ieee754_sqrt (0.5 * (d - __real__ x));
|
|
if (scale == 1 && fabs (__imag__ x) < 1.0)
|
|
{
|
|
/* Avoid possible intermediate underflow. */
|
|
r = fabs (__imag__ x / s);
|
|
s = __scalbn (s, scale);
|
|
scale = 0;
|
|
}
|
|
else
|
|
r = fabs (0.5 * (__imag__ x / s));
|
|
}
|
|
|
|
if (scale)
|
|
{
|
|
r = __scalbn (r, scale);
|
|
s = __scalbn (s, scale);
|
|
}
|
|
|
|
__real__ res = r;
|
|
__imag__ res = __copysign (s, __imag__ x);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
weak_alias (__csqrt, csqrt)
|
|
#ifdef NO_LONG_DOUBLE
|
|
strong_alias (__csqrt, __csqrtl)
|
|
weak_alias (__csqrt, csqrtl)
|
|
#endif
|