glibc/math/s_ctanh.c
Joseph Myers 0b87419b69 Fix ctan, ctanh missing underflows (bug 18595).
Similar to various other bugs in this area, ctan and ctanh can fail to
raise the underflow exception for some cases of results that are tiny
and inexact.  This patch forces the exception in a similar way to
previous fixes.

Tested for x86_64 and x86.

	[BZ #18595]
	* math/s_ctan.c (__ctan): Force underflow exception for results
	whose real or imaginary part has small absolute value.
	* math/s_ctanf.c (__ctanf): Likewise.
	* math/s_ctanh.c (__ctanh): Likewise.
	* math/s_ctanhf.c (__ctanhf): Likewise.
	* math/s_ctanhl.c (__ctanhl): Likewise.
	* math/s_ctanl.c (__ctanl): Likewise.
	* math/auto-libm-test-in: Do not allow missing underflow for ctan
	and ctanh.  Add more tests of ctan and ctanh.
2015-09-15 17:46:08 +00:00

132 lines
3.4 KiB
C

/* Complex hyperbole tangent for double.
Copyright (C) 1997-2015 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <fenv.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ double
__ctanh (__complex__ double x)
{
__complex__ double res;
if (__glibc_unlikely (!isfinite (__real__ x) || !isfinite (__imag__ x)))
{
if (__isinf_ns (__real__ x))
{
__real__ res = __copysign (1.0, __real__ x);
__imag__ res = __copysign (0.0, __imag__ x);
}
else if (__imag__ x == 0.0)
{
res = x;
}
else
{
__real__ res = __nan ("");
__imag__ res = __nan ("");
if (__isinf_ns (__imag__ x))
feraiseexcept (FE_INVALID);
}
}
else
{
double sinix, cosix;
double den;
const int t = (int) ((DBL_MAX_EXP - 1) * M_LN2 / 2);
/* tanh(x+iy) = (sinh(2x) + i*sin(2y))/(cosh(2x) + cos(2y))
= (sinh(x)*cosh(x) + i*sin(y)*cos(y))/(sinh(x)^2 + cos(y)^2). */
if (__glibc_likely (fabs (__imag__ x) > DBL_MIN))
{
__sincos (__imag__ x, &sinix, &cosix);
}
else
{
sinix = __imag__ x;
cosix = 1.0;
}
if (fabs (__real__ x) > t)
{
/* Avoid intermediate overflow when the imaginary part of
the result may be subnormal. Ignoring negligible terms,
the real part is +/- 1, the imaginary part is
sin(y)*cos(y)/sinh(x)^2 = 4*sin(y)*cos(y)/exp(2x). */
double exp_2t = __ieee754_exp (2 * t);
__real__ res = __copysign (1.0, __real__ x);
__imag__ res = 4 * sinix * cosix;
__real__ x = fabs (__real__ x);
__real__ x -= t;
__imag__ res /= exp_2t;
if (__real__ x > t)
{
/* Underflow (original real part of x has absolute value
> 2t). */
__imag__ res /= exp_2t;
}
else
__imag__ res /= __ieee754_exp (2 * __real__ x);
}
else
{
double sinhrx, coshrx;
if (fabs (__real__ x) > DBL_MIN)
{
sinhrx = __ieee754_sinh (__real__ x);
coshrx = __ieee754_cosh (__real__ x);
}
else
{
sinhrx = __real__ x;
coshrx = 1.0;
}
if (fabs (sinhrx) > fabs (cosix) * DBL_EPSILON)
den = sinhrx * sinhrx + cosix * cosix;
else
den = cosix * cosix;
__real__ res = sinhrx * coshrx / den;
__imag__ res = sinix * cosix / den;
}
if (fabs (__real__ res) < DBL_MIN)
{
double force_underflow = __real__ res * __real__ res;
math_force_eval (force_underflow);
}
if (fabs (__imag__ res) < DBL_MIN)
{
double force_underflow = __imag__ res * __imag__ res;
math_force_eval (force_underflow);
}
}
return res;
}
weak_alias (__ctanh, ctanh)
#ifdef NO_LONG_DOUBLE
strong_alias (__ctanh, __ctanhl)
weak_alias (__ctanh, ctanhl)
#endif