mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 22:10:13 +00:00
401 lines
14 KiB
Python
Executable File
401 lines
14 KiB
Python
Executable File
#!/usr/bin/python3
|
|
# Plot GNU C Library string microbenchmark output.
|
|
# Copyright (C) 2019-2024 Free Software Foundation, Inc.
|
|
# This file is part of the GNU C Library.
|
|
#
|
|
# The GNU C Library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License, or (at your option) any later version.
|
|
#
|
|
# The GNU C Library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with the GNU C Library; if not, see
|
|
# <https://www.gnu.org/licenses/>.
|
|
"""Plot string microbenchmark results.
|
|
|
|
Given a benchmark results file in JSON format and a benchmark schema file,
|
|
plot the benchmark timings in one of the available representations.
|
|
|
|
Separate figure is generated and saved to a file for each 'results' array
|
|
found in the benchmark results file. Output filenames and plot titles
|
|
are derived from the metadata found in the benchmark results file.
|
|
"""
|
|
import argparse
|
|
from collections import defaultdict
|
|
import json
|
|
import matplotlib as mpl
|
|
import numpy as np
|
|
import os
|
|
import sys
|
|
|
|
try:
|
|
import jsonschema as validator
|
|
except ImportError:
|
|
print("Could not find jsonschema module.")
|
|
raise
|
|
|
|
# Use pre-selected markers for plotting lines to improve readability
|
|
markers = [".", "x", "^", "+", "*", "v", "1", ">", "s"]
|
|
|
|
# Benchmark variants for which the x-axis scale should be logarithmic
|
|
log_variants = {"powers of 2"}
|
|
|
|
|
|
def gmean(numbers):
|
|
"""Compute geometric mean.
|
|
|
|
Args:
|
|
numbers: 2-D list of numbers
|
|
Return:
|
|
numpy array with geometric means of numbers along each column
|
|
"""
|
|
a = np.array(numbers, dtype=np.complex)
|
|
means = a.prod(0) ** (1.0 / len(a))
|
|
return np.real(means)
|
|
|
|
|
|
def relativeDifference(x, x_reference):
|
|
"""Compute per-element relative difference between each row of
|
|
a matrix and an array of reference values.
|
|
|
|
Args:
|
|
x: numpy matrix of shape (n, m)
|
|
x_reference: numpy array of size m
|
|
Return:
|
|
relative difference between rows of x and x_reference (in %)
|
|
"""
|
|
abs_diff = np.subtract(x, x_reference)
|
|
return np.divide(np.multiply(abs_diff, 100.0), x_reference)
|
|
|
|
|
|
def plotTime(timings, routine, bench_variant, title, outpath):
|
|
"""Plot absolute timing values.
|
|
|
|
Args:
|
|
timings: timings to plot
|
|
routine: benchmarked string routine name
|
|
bench_variant: top-level benchmark variant name
|
|
title: figure title (generated so far)
|
|
outpath: output file path (generated so far)
|
|
Return:
|
|
y: y-axis values to plot
|
|
title_final: final figure title
|
|
outpath_final: file output file path
|
|
"""
|
|
y = timings
|
|
plt.figure()
|
|
|
|
if not args.values:
|
|
plt.axes().yaxis.set_major_formatter(plt.NullFormatter())
|
|
|
|
plt.ylabel("timing")
|
|
title_final = "%s %s benchmark timings\n%s" % \
|
|
(routine, bench_variant, title)
|
|
outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
|
|
(routine, args.plot, bench_variant, outpath))
|
|
|
|
return y, title_final, outpath_final
|
|
|
|
|
|
def plotRelative(timings, all_timings, routine, ifuncs, bench_variant,
|
|
title, outpath):
|
|
"""Plot timing values relative to a chosen ifunc
|
|
|
|
Args:
|
|
timings: timings to plot
|
|
all_timings: all collected timings
|
|
routine: benchmarked string routine name
|
|
ifuncs: names of ifuncs tested
|
|
bench_variant: top-level benchmark variant name
|
|
title: figure title (generated so far)
|
|
outpath: output file path (generated so far)
|
|
Return:
|
|
y: y-axis values to plot
|
|
title_final: final figure title
|
|
outpath_final: file output file path
|
|
"""
|
|
# Choose the baseline ifunc
|
|
if args.baseline:
|
|
baseline = args.baseline.replace("__", "")
|
|
else:
|
|
baseline = ifuncs[0]
|
|
|
|
baseline_index = ifuncs.index(baseline)
|
|
|
|
# Compare timings against the baseline
|
|
y = relativeDifference(timings, all_timings[baseline_index])
|
|
|
|
plt.figure()
|
|
plt.axhspan(-args.threshold, args.threshold, color="lightgray", alpha=0.3)
|
|
plt.axhline(0, color="k", linestyle="--", linewidth=0.4)
|
|
plt.ylabel("relative timing (in %)")
|
|
title_final = "Timing comparison against %s\nfor %s benchmark, %s" % \
|
|
(baseline, bench_variant, title)
|
|
outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
|
|
(baseline, args.plot, bench_variant, outpath))
|
|
|
|
return y, title_final, outpath_final
|
|
|
|
|
|
def plotMax(timings, routine, bench_variant, title, outpath):
|
|
"""Plot results as percentage of the maximum ifunc performance.
|
|
|
|
The optimal ifunc is computed on a per-parameter-value basis.
|
|
Performance is computed as 1/timing.
|
|
|
|
Args:
|
|
timings: timings to plot
|
|
routine: benchmarked string routine name
|
|
bench_variant: top-level benchmark variant name
|
|
title: figure title (generated so far)
|
|
outpath: output file path (generated so far)
|
|
Return:
|
|
y: y-axis values to plot
|
|
title_final: final figure title
|
|
outpath_final: file output file path
|
|
"""
|
|
perf = np.reciprocal(timings)
|
|
max_perf = np.max(perf, axis=0)
|
|
y = np.add(100.0, relativeDifference(perf, max_perf))
|
|
|
|
plt.figure()
|
|
plt.axhline(100.0, color="k", linestyle="--", linewidth=0.4)
|
|
plt.ylabel("1/timing relative to max (in %)")
|
|
title_final = "Performance comparison against max for %s\n%s " \
|
|
"benchmark, %s" % (routine, bench_variant, title)
|
|
outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
|
|
(routine, args.plot, bench_variant, outpath))
|
|
|
|
return y, title_final, outpath_final
|
|
|
|
|
|
def plotThroughput(timings, params, routine, bench_variant, title, outpath):
|
|
"""Plot throughput.
|
|
|
|
Throughput is computed as the varied parameter value over timing.
|
|
|
|
Args:
|
|
timings: timings to plot
|
|
params: varied parameter values
|
|
routine: benchmarked string routine name
|
|
bench_variant: top-level benchmark variant name
|
|
title: figure title (generated so far)
|
|
outpath: output file path (generated so far)
|
|
Return:
|
|
y: y-axis values to plot
|
|
title_final: final figure title
|
|
outpath_final: file output file path
|
|
"""
|
|
y = np.divide(params, timings)
|
|
plt.figure()
|
|
|
|
if not args.values:
|
|
plt.axes().yaxis.set_major_formatter(plt.NullFormatter())
|
|
|
|
plt.ylabel("%s / timing" % args.key)
|
|
title_final = "%s %s benchmark throughput results\n%s" % \
|
|
(routine, bench_variant, title)
|
|
outpath_final = os.path.join(args.outdir, "%s_%s_%s%s" % \
|
|
(routine, args.plot, bench_variant, outpath))
|
|
return y, title_final, outpath_final
|
|
|
|
|
|
def finishPlot(x, y, title, outpath, x_scale, plotted_ifuncs):
|
|
"""Finish generating current Figure.
|
|
|
|
Args:
|
|
x: x-axis values
|
|
y: y-axis values
|
|
title: figure title
|
|
outpath: output file path
|
|
x_scale: x-axis scale
|
|
plotted_ifuncs: names of ifuncs to plot
|
|
"""
|
|
plt.xlabel(args.key)
|
|
plt.xscale(x_scale)
|
|
plt.title(title)
|
|
|
|
plt.grid(color="k", linestyle=args.grid, linewidth=0.5, alpha=0.5)
|
|
|
|
for i in range(len(plotted_ifuncs)):
|
|
plt.plot(x, y[i], marker=markers[i % len(markers)],
|
|
label=plotted_ifuncs[i])
|
|
|
|
plt.legend(loc="best", fontsize="small")
|
|
plt.savefig("%s_%s.%s" % (outpath, x_scale, args.extension),
|
|
format=args.extension, dpi=args.resolution)
|
|
|
|
if args.display:
|
|
plt.show()
|
|
|
|
plt.close()
|
|
|
|
|
|
def plotRecursive(json_iter, routine, ifuncs, bench_variant, title, outpath,
|
|
x_scale):
|
|
"""Plot benchmark timings.
|
|
|
|
Args:
|
|
json_iter: reference to json object
|
|
routine: benchmarked string routine name
|
|
ifuncs: names of ifuncs tested
|
|
bench_variant: top-level benchmark variant name
|
|
title: figure's title (generated so far)
|
|
outpath: output file path (generated so far)
|
|
x_scale: x-axis scale
|
|
"""
|
|
|
|
# RECURSIVE CASE: 'variants' array found
|
|
if "variants" in json_iter:
|
|
# Continue recursive search for 'results' array. Record the
|
|
# benchmark variant (configuration) in order to customize
|
|
# the title, filename and X-axis scale for the generated figure.
|
|
for variant in json_iter["variants"]:
|
|
new_title = "%s%s, " % (title, variant["name"])
|
|
new_outpath = "%s_%s" % (outpath, variant["name"].replace(" ", "_"))
|
|
new_x_scale = "log" if variant["name"] in log_variants else x_scale
|
|
|
|
plotRecursive(variant, routine, ifuncs, bench_variant, new_title,
|
|
new_outpath, new_x_scale)
|
|
return
|
|
|
|
# BASE CASE: 'results' array found
|
|
domain = []
|
|
timings = defaultdict(list)
|
|
|
|
# Collect timings
|
|
for result in json_iter["results"]:
|
|
domain.append(result[args.key])
|
|
timings[result[args.key]].append(result["timings"])
|
|
|
|
domain = np.unique(np.array(domain))
|
|
averages = []
|
|
|
|
# Compute geometric mean if there are multiple timings for each
|
|
# parameter value.
|
|
for parameter in domain:
|
|
averages.append(gmean(timings[parameter]))
|
|
|
|
averages = np.array(averages).transpose()
|
|
|
|
# Choose ifuncs to plot
|
|
if isinstance(args.ifuncs, str):
|
|
plotted_ifuncs = ifuncs
|
|
else:
|
|
plotted_ifuncs = [x.replace("__", "") for x in args.ifuncs]
|
|
|
|
plotted_indices = [ifuncs.index(x) for x in plotted_ifuncs]
|
|
plotted_vals = averages[plotted_indices,:]
|
|
|
|
# Plotting logic specific to each plot type
|
|
if args.plot == "time":
|
|
codomain, title, outpath = plotTime(plotted_vals, routine,
|
|
bench_variant, title, outpath)
|
|
elif args.plot == "rel":
|
|
codomain, title, outpath = plotRelative(plotted_vals, averages, routine,
|
|
ifuncs, bench_variant, title, outpath)
|
|
elif args.plot == "max":
|
|
codomain, title, outpath = plotMax(plotted_vals, routine,
|
|
bench_variant, title, outpath)
|
|
elif args.plot == "thru":
|
|
codomain, title, outpath = plotThroughput(plotted_vals, domain, routine,
|
|
bench_variant, title, outpath)
|
|
|
|
# Plotting logic shared between plot types
|
|
finishPlot(domain, codomain, title, outpath, x_scale, plotted_ifuncs)
|
|
|
|
|
|
def main(args):
|
|
"""Program Entry Point.
|
|
|
|
Args:
|
|
args: command line arguments (excluding program name)
|
|
"""
|
|
|
|
# Select non-GUI matplotlib backend if interactive display is disabled
|
|
if not args.display:
|
|
mpl.use("Agg")
|
|
|
|
global plt
|
|
import matplotlib.pyplot as plt
|
|
|
|
schema = None
|
|
|
|
with open(args.schema, "r") as f:
|
|
schema = json.load(f)
|
|
|
|
for filename in args.bench:
|
|
bench = None
|
|
|
|
if filename == '-':
|
|
bench = json.load(sys.stdin)
|
|
else:
|
|
with open(filename, "r") as f:
|
|
bench = json.load(f)
|
|
|
|
validator.validate(bench, schema)
|
|
|
|
for function in bench["functions"]:
|
|
bench_variant = bench["functions"][function]["bench-variant"]
|
|
ifuncs = bench["functions"][function]["ifuncs"]
|
|
ifuncs = [x.replace("__", "") for x in ifuncs]
|
|
|
|
plotRecursive(bench["functions"][function], function, ifuncs,
|
|
bench_variant, "", "", args.logarithmic)
|
|
|
|
|
|
""" main() """
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(description=
|
|
"Plot string microbenchmark results",
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
|
|
# Required parameter
|
|
parser.add_argument("bench", nargs="+",
|
|
help="benchmark results file(s) in json format, " \
|
|
"and/or '-' as a benchmark result file from stdin")
|
|
|
|
# Optional parameters
|
|
parser.add_argument("-b", "--baseline", type=str,
|
|
help="baseline ifunc for 'rel' plot")
|
|
parser.add_argument("-d", "--display", action="store_true",
|
|
help="display figures")
|
|
parser.add_argument("-e", "--extension", type=str, default="png",
|
|
choices=["png", "pdf", "svg"],
|
|
help="output file(s) extension")
|
|
parser.add_argument("-g", "--grid", action="store_const", default="",
|
|
const="-", help="show grid lines")
|
|
parser.add_argument("-i", "--ifuncs", nargs="+", default="all",
|
|
help="ifuncs to plot")
|
|
parser.add_argument("-k", "--key", type=str, default="length",
|
|
help="key to access the varied parameter")
|
|
parser.add_argument("-l", "--logarithmic", action="store_const",
|
|
default="linear", const="log",
|
|
help="use logarithmic x-axis scale")
|
|
parser.add_argument("-o", "--outdir", type=str, default=os.getcwd(),
|
|
help="output directory")
|
|
parser.add_argument("-p", "--plot", type=str, default="time",
|
|
choices=["time", "rel", "max", "thru"],
|
|
help="plot absolute timings, relative timings, " \
|
|
"performance relative to max, or throughput")
|
|
parser.add_argument("-r", "--resolution", type=int, default=100,
|
|
help="dpi resolution for the generated figures")
|
|
parser.add_argument("-s", "--schema", type=str,
|
|
default=os.path.join(os.path.dirname(
|
|
os.path.realpath(__file__)),
|
|
"benchout_strings.schema.json"),
|
|
help="schema file to validate the results file.")
|
|
parser.add_argument("-t", "--threshold", type=int, default=5,
|
|
help="threshold to mark in 'rel' graph (in %%)")
|
|
parser.add_argument("-v", "--values", action="store_true",
|
|
help="show actual values")
|
|
|
|
args = parser.parse_args()
|
|
main(args)
|