mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-06 13:20:06 +00:00
b664d723de
* malloc/hooks.c (realloc_check): If mremap succeeds actually use the result. * sysdeps/i386/i486/bits/string.h: Add early clobber for "a" output parameter. Reported by Denis Zaitsev <zzz@cd-club.ru>. * Versions.def (libthread_db): Add GLIBC_2.3. 2002-07-09 Jakub Jelinek <jakub@redhat.com> * libio/freopen.c (freopen): Reset jump tables, use mmap stdio for the new stream if possible. * libio/freopen64.c (freopen64): Likewise. * libio/Makefile (tests): Add tst-freopen. * libio/tst-freopen.c: New file. 2002-07-03 Jakub Jelinek <jakub@redhat.com> * libio/stdio.h (obstack_printf): Add format attribute. (obstack_vprintf): Likewise. 2002-07-04 Jakub Jelinek <jakub@redhat.com> * posix/regex_internal.h (re_token_t): Shrink the structure to 8 resp. 16 bytes on 32-bit resp. 64-bit platforms. (re_charset_t, re_string_t): Reorder structure members for 64-bit architectures. 2002-07-04 Jakub Jelinek <jakub@redhat.com> * posix/regcomp.c (re_compile_internal): Move clearing of dfa... (init_dfa): ...here. 2002-07-05 Isamu Hasegawa <isamu@yamato.ibm.com> * posix/regcomp.c (parse_sub_exp): Add nodes OP_OPEN_SUBEXP and OP_CLOSE_SUBEXP at both ends of sub expressions instead of SUBEXP nodes in parse trees. (calc_first): Fix the Definition of `firsts' of OP_OPEN_SUBEXP and OP_CLOSE_SUBEXP, and remove the definition of SUBEXP. (calc_epsdest): Treat OP_OPEN_SUBEXP and OP_CLOSE_SUBEXP as the nodes which can epsilon transit. * posix/regex_internal.h: Add OP_OPEN_SUBEXP and OP_CLOSE_SUBEXP to IS_EPSILON_NODE macro. * posix/regexec.c (update_regs): New function to update registers by refering OP_OPEN_SUBEXP and OP_CLOSE_SUBEXP nodes. (proceed_next_node): Use the entities of the nodes to determine whether the node can transit to. (set_regs): Use update_regs function to update registers. 2002-07-03 Jakub Jelinek <jakub@redhat.com> * posix/bug-regex4.c (main): Remove duplicate setlocale. * posix/bug-regex6.c: New file. * posix/Makefile (tests): Add bug-regex6. (bug-regex6-ENV): Set LOCPATH. 2002-07-10 Ulrich Drepper <drepper@redhat.com>
751 lines
26 KiB
C
751 lines
26 KiB
C
/* Conversion module for ISO-2022-JP-3.
|
|
Copyright (C) 1998-1999, 2000-2002 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998,
|
|
and Bruno Haible <bruno@clisp.org>, 2002.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
#include <assert.h>
|
|
#include <dlfcn.h>
|
|
#include <gconv.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "jis0201.h"
|
|
#include "jis0208.h"
|
|
#include "jisx0213.h"
|
|
|
|
/* This makes obvious what everybody knows: 0x1b is the Esc character. */
|
|
#define ESC 0x1b
|
|
|
|
/* Definitions used in the body of the `gconv' function. */
|
|
#define CHARSET_NAME "ISO-2022-JP-3//"
|
|
#define FROM_LOOP from_iso2022jp3_loop
|
|
#define TO_LOOP to_iso2022jp3_loop
|
|
#define DEFINE_INIT 1
|
|
#define DEFINE_FINI 1
|
|
#define FROM_LOOP_MIN_NEEDED_FROM 1
|
|
#define FROM_LOOP_MAX_NEEDED_FROM 4
|
|
#define FROM_LOOP_MIN_NEEDED_TO 4
|
|
#define FROM_LOOP_MAX_NEEDED_TO 8
|
|
#define TO_LOOP_MIN_NEEDED_FROM 4
|
|
#define TO_LOOP_MAX_NEEDED_FROM 4
|
|
#define TO_LOOP_MIN_NEEDED_TO 1
|
|
#define TO_LOOP_MAX_NEEDED_TO 6
|
|
#define PREPARE_LOOP \
|
|
int saved_state; \
|
|
int *statep = &data->__statep->__count;
|
|
#define EXTRA_LOOP_ARGS , statep
|
|
|
|
|
|
/* The COUNT element of the state keeps track of the currently selected
|
|
character set. The possible values are: */
|
|
enum
|
|
{
|
|
ASCII_set = 0, /* Esc ( B */
|
|
JISX0208_1978_set = 1 << 3, /* Esc $ @ */
|
|
JISX0208_1983_set = 2 << 3, /* Esc $ B */
|
|
JISX0201_Roman_set = 3 << 3, /* Esc ( J */
|
|
JISX0201_Kana_set = 4 << 3, /* Esc ( I */
|
|
JISX0213_1_set = 5 << 3, /* Esc $ ( O */
|
|
JISX0213_2_set = 6 << 3, /* Esc $ ( P */
|
|
CURRENT_SEL_MASK = 7 << 3
|
|
};
|
|
|
|
/* During UCS-4 to ISO-2022-JP-3 conversion, the COUNT element of the state
|
|
also contains the last two bytes to be output, shifted by 6 bits, and a
|
|
one-bit indicator whether they must be preceded by the shift sequence,
|
|
in bit 22. */
|
|
|
|
/* Since this is a stateful encoding we have to provide code which resets
|
|
the output state to the initial state. This has to be done during the
|
|
flushing. */
|
|
#define EMIT_SHIFT_TO_INIT \
|
|
if ((data->__statep->__count & ~7) != ASCII_set) \
|
|
{ \
|
|
if (FROM_DIRECTION) \
|
|
{ \
|
|
/* It's easy, we don't have to emit anything, we just reset the \
|
|
state for the input. */ \
|
|
data->__statep->__count &= 7; \
|
|
data->__statep->__count |= ASCII_set; \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* We are not in the initial state. To switch back we have \
|
|
to write out the buffered character and/or emit the sequence \
|
|
`Esc ( B'. */ \
|
|
size_t need = \
|
|
(data->__statep->__count >> 6 \
|
|
? (data->__statep->__count >> 22 ? 3 : 0) + 2 \
|
|
: 0) \
|
|
+ ((data->__statep->__count & CURRENT_SEL_MASK) != ASCII_set \
|
|
? 3 : 0); \
|
|
\
|
|
if (__builtin_expect (outbuf + need > outend, 0)) \
|
|
/* We don't have enough room in the output buffer. */ \
|
|
status = __GCONV_FULL_OUTPUT; \
|
|
else \
|
|
{ \
|
|
if (data->__statep->__count >> 6) \
|
|
{ \
|
|
uint32_t lasttwo = data->__statep->__count >> 6; \
|
|
\
|
|
if (lasttwo >> 16) \
|
|
{ \
|
|
/* Write out the shift sequence before the last \
|
|
character. */ \
|
|
assert ((data->__statep->__count & CURRENT_SEL_MASK) \
|
|
== JISX0208_1983_set); \
|
|
*outbuf++ = ESC; \
|
|
*outbuf++ = '$'; \
|
|
*outbuf++ = 'B'; \
|
|
} \
|
|
/* Write out the last character. */ \
|
|
*outbuf++ = (lasttwo >> 8) & 0xff; \
|
|
*outbuf++ = lasttwo & 0xff; \
|
|
} \
|
|
if ((data->__statep->__count & CURRENT_SEL_MASK) != ASCII_set) \
|
|
{ \
|
|
/* Write out the shift sequence. */ \
|
|
*outbuf++ = ESC; \
|
|
*outbuf++ = '('; \
|
|
*outbuf++ = 'B'; \
|
|
} \
|
|
data->__statep->__count &= 7; \
|
|
data->__statep->__count |= ASCII_set; \
|
|
} \
|
|
} \
|
|
}
|
|
|
|
|
|
/* Since we might have to reset input pointer we must be able to save
|
|
and retore the state. */
|
|
#define SAVE_RESET_STATE(Save) \
|
|
if (Save) \
|
|
saved_state = *statep; \
|
|
else \
|
|
*statep = saved_state
|
|
|
|
|
|
/* First define the conversion function from ISO-2022-JP-3 to UCS-4. */
|
|
#define MIN_NEEDED_INPUT FROM_LOOP_MIN_NEEDED_FROM
|
|
#define MAX_NEEDED_INPUT FROM_LOOP_MAX_NEEDED_FROM
|
|
#define MIN_NEEDED_OUTPUT FROM_LOOP_MIN_NEEDED_TO
|
|
#define MAX_NEEDED_OUTPUT FROM_LOOP_MAX_NEEDED_TO
|
|
#define LOOPFCT FROM_LOOP
|
|
#define BODY \
|
|
{ \
|
|
uint32_t ch = *inptr; \
|
|
\
|
|
/* Recognize escape sequences. */ \
|
|
if (__builtin_expect (ch == ESC, 0)) \
|
|
{ \
|
|
/* We now must be prepared to read two to three more bytes. \
|
|
If we have a match in the first byte but then the input buffer \
|
|
ends we terminate with an error since we must not risk missing \
|
|
an escape sequence just because it is not entirely in the \
|
|
current input buffer. */ \
|
|
if (__builtin_expect (inptr + 2 >= inend, 0) \
|
|
|| (inptr[1] == '$' && inptr[2] == '(' \
|
|
&& __builtin_expect (inptr + 3 >= inend, 0))) \
|
|
{ \
|
|
/* Not enough input available. */ \
|
|
result = __GCONV_INCOMPLETE_INPUT; \
|
|
break; \
|
|
} \
|
|
\
|
|
if (inptr[1] == '(') \
|
|
{ \
|
|
if (inptr[2] == 'B') \
|
|
{ \
|
|
/* ASCII selected. */ \
|
|
set = ASCII_set; \
|
|
inptr += 3; \
|
|
continue; \
|
|
} \
|
|
else if (inptr[2] == 'J') \
|
|
{ \
|
|
/* JIS X 0201 selected. */ \
|
|
set = JISX0201_Roman_set; \
|
|
inptr += 3; \
|
|
continue; \
|
|
} \
|
|
else if (inptr[2] == 'I') \
|
|
{ \
|
|
/* JIS X 0201 selected. */ \
|
|
set = JISX0201_Kana_set; \
|
|
inptr += 3; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
else if (inptr[1] == '$') \
|
|
{ \
|
|
if (inptr[2] == '@') \
|
|
{ \
|
|
/* JIS X 0208-1978 selected. */ \
|
|
set = JISX0208_1978_set; \
|
|
inptr += 3; \
|
|
continue; \
|
|
} \
|
|
else if (inptr[2] == 'B') \
|
|
{ \
|
|
/* JIS X 0208-1983 selected. */ \
|
|
set = JISX0208_1983_set; \
|
|
inptr += 3; \
|
|
continue; \
|
|
} \
|
|
else if (inptr[2] == '(') \
|
|
{ \
|
|
if (inptr[3] == 'O') \
|
|
{ \
|
|
/* JIS X 0213 plane 1 selected. */ \
|
|
set = JISX0213_1_set; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
else if (inptr[3] == 'P') \
|
|
{ \
|
|
/* JIS X 0213 plane 2 selected. */ \
|
|
set = JISX0213_2_set; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
if (ch >= 0x80) \
|
|
{ \
|
|
STANDARD_FROM_LOOP_ERR_HANDLER (1); \
|
|
} \
|
|
else if (set == ASCII_set || (ch < 0x21 || ch == 0x7f)) \
|
|
/* Almost done, just advance the input pointer. */ \
|
|
++inptr; \
|
|
else if (set == JISX0201_Roman_set) \
|
|
{ \
|
|
/* Use the JIS X 0201 table. */ \
|
|
ch = jisx0201_to_ucs4 (ch); \
|
|
if (__builtin_expect (ch == __UNKNOWN_10646_CHAR, 0)) \
|
|
{ \
|
|
STANDARD_FROM_LOOP_ERR_HANDLER (1); \
|
|
} \
|
|
++inptr; \
|
|
} \
|
|
else if (set == JISX0201_Kana_set) \
|
|
{ \
|
|
/* Use the JIS X 0201 table. */ \
|
|
ch = jisx0201_to_ucs4 (ch + 0x80); \
|
|
if (__builtin_expect (ch == __UNKNOWN_10646_CHAR, 0)) \
|
|
{ \
|
|
STANDARD_FROM_LOOP_ERR_HANDLER (1); \
|
|
} \
|
|
++inptr; \
|
|
} \
|
|
else if (set == JISX0208_1978_set || set == JISX0208_1983_set) \
|
|
{ \
|
|
/* XXX I don't have the tables for these two old variants of \
|
|
JIS X 0208. Therefore I'm using the tables for JIS X \
|
|
0208-1990. If somebody has problems with this please \
|
|
provide the appropriate tables. */ \
|
|
ch = jisx0208_to_ucs4 (&inptr, inend - inptr, 0); \
|
|
\
|
|
if (__builtin_expect (ch == 0, 0)) \
|
|
{ \
|
|
result = __GCONV_INCOMPLETE_INPUT; \
|
|
break; \
|
|
} \
|
|
else if (__builtin_expect (ch == __UNKNOWN_10646_CHAR, 0)) \
|
|
{ \
|
|
STANDARD_FROM_LOOP_ERR_HANDLER (1); \
|
|
} \
|
|
} \
|
|
else /* (set == JISX0213_1_set || set == JISX0213_2_set) */ \
|
|
{ \
|
|
if (__builtin_expect (inptr + 1 >= inend, 0)) \
|
|
{ \
|
|
result = __GCONV_INCOMPLETE_INPUT; \
|
|
break; \
|
|
} \
|
|
\
|
|
ch = jisx0213_to_ucs4 (((set - JISX0213_1_set + (1 << 3)) << 5) + ch, \
|
|
inptr[1]); \
|
|
if (ch == 0) \
|
|
STANDARD_FROM_LOOP_ERR_HANDLER (1); \
|
|
\
|
|
if (ch < 0x80) \
|
|
{ \
|
|
/* It's a combining character. */ \
|
|
uint32_t u1 = __jisx0213_to_ucs_combining[ch - 1][0]; \
|
|
uint32_t u2 = __jisx0213_to_ucs_combining[ch - 1][1]; \
|
|
\
|
|
/* See whether we have room for two characters. */ \
|
|
if (outptr + 8 <= outend) \
|
|
{ \
|
|
inptr += 2; \
|
|
put32 (outptr, u1); \
|
|
outptr += 4; \
|
|
put32 (outptr, u2); \
|
|
outptr += 4; \
|
|
continue; \
|
|
} \
|
|
else \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
} \
|
|
\
|
|
inptr += 2; \
|
|
} \
|
|
\
|
|
put32 (outptr, ch); \
|
|
outptr += 4; \
|
|
}
|
|
#define LOOP_NEED_FLAGS
|
|
#define EXTRA_LOOP_DECLS , int *statep
|
|
#define INIT_PARAMS int set = *statep
|
|
#define UPDATE_PARAMS *statep = set
|
|
#include <iconv/loop.c>
|
|
|
|
|
|
/* Next, define the other direction, from UCS-4 to ISO-2022-JP-3. */
|
|
|
|
/* Composition tables for each of the relevant combining characters. */
|
|
static const struct
|
|
{
|
|
uint16_t base;
|
|
uint16_t composed;
|
|
} comp_table_data[] =
|
|
{
|
|
#define COMP_TABLE_IDX_02E5 0
|
|
#define COMP_TABLE_LEN_02E5 1
|
|
{ 0x2b64, 0x2b65 }, /* 0x12B65 = 0x12B64 U+02E5 */
|
|
#define COMP_TABLE_IDX_02E9 (COMP_TABLE_IDX_02E5 + COMP_TABLE_LEN_02E5)
|
|
#define COMP_TABLE_LEN_02E9 1
|
|
{ 0x2b60, 0x2b66 }, /* 0x12B66 = 0x12B60 U+02E9 */
|
|
#define COMP_TABLE_IDX_0300 (COMP_TABLE_IDX_02E9 + COMP_TABLE_LEN_02E9)
|
|
#define COMP_TABLE_LEN_0300 5
|
|
{ 0x295c, 0x2b44 }, /* 0x12B44 = 0x1295C U+0300 */
|
|
{ 0x2b38, 0x2b48 }, /* 0x12B48 = 0x12B38 U+0300 */
|
|
{ 0x2b37, 0x2b4a }, /* 0x12B4A = 0x12B37 U+0300 */
|
|
{ 0x2b30, 0x2b4c }, /* 0x12B4C = 0x12B30 U+0300 */
|
|
{ 0x2b43, 0x2b4e }, /* 0x12B4E = 0x12B43 U+0300 */
|
|
#define COMP_TABLE_IDX_0301 (COMP_TABLE_IDX_0300 + COMP_TABLE_LEN_0300)
|
|
#define COMP_TABLE_LEN_0301 4
|
|
{ 0x2b38, 0x2b49 }, /* 0x12B49 = 0x12B38 U+0301 */
|
|
{ 0x2b37, 0x2b4b }, /* 0x12B4B = 0x12B37 U+0301 */
|
|
{ 0x2b30, 0x2b4d }, /* 0x12B4D = 0x12B30 U+0301 */
|
|
{ 0x2b43, 0x2b4f }, /* 0x12B4F = 0x12B43 U+0301 */
|
|
#define COMP_TABLE_IDX_309A (COMP_TABLE_IDX_0301 + COMP_TABLE_LEN_0301)
|
|
#define COMP_TABLE_LEN_309A 14
|
|
{ 0x242b, 0x2477 }, /* 0x12477 = 0x1242B U+309A */
|
|
{ 0x242d, 0x2478 }, /* 0x12478 = 0x1242D U+309A */
|
|
{ 0x242f, 0x2479 }, /* 0x12479 = 0x1242F U+309A */
|
|
{ 0x2431, 0x247a }, /* 0x1247A = 0x12431 U+309A */
|
|
{ 0x2433, 0x247b }, /* 0x1247B = 0x12433 U+309A */
|
|
{ 0x252b, 0x2577 }, /* 0x12577 = 0x1252B U+309A */
|
|
{ 0x252d, 0x2578 }, /* 0x12578 = 0x1252D U+309A */
|
|
{ 0x252f, 0x2579 }, /* 0x12579 = 0x1252F U+309A */
|
|
{ 0x2531, 0x257a }, /* 0x1257A = 0x12531 U+309A */
|
|
{ 0x2533, 0x257b }, /* 0x1257B = 0x12533 U+309A */
|
|
{ 0x253b, 0x257c }, /* 0x1257C = 0x1253B U+309A */
|
|
{ 0x2544, 0x257d }, /* 0x1257D = 0x12544 U+309A */
|
|
{ 0x2548, 0x257e }, /* 0x1257E = 0x12548 U+309A */
|
|
{ 0x2675, 0x2678 }, /* 0x12678 = 0x12675 U+309A */
|
|
};
|
|
|
|
#define MIN_NEEDED_INPUT TO_LOOP_MIN_NEEDED_FROM
|
|
#define MAX_NEEDED_INPUT TO_LOOP_MAX_NEEDED_FROM
|
|
#define MIN_NEEDED_OUTPUT TO_LOOP_MIN_NEEDED_TO
|
|
#define MAX_NEEDED_OUTPUT TO_LOOP_MAX_NEEDED_TO
|
|
#define LOOPFCT TO_LOOP
|
|
#define BODY \
|
|
{ \
|
|
uint32_t ch = get32 (inptr); \
|
|
\
|
|
if (lasttwo != 0) \
|
|
{ \
|
|
/* Attempt to combine the last character with this one. */ \
|
|
unsigned int idx; \
|
|
unsigned int len; \
|
|
\
|
|
if (ch == 0x02e5) \
|
|
idx = COMP_TABLE_IDX_02E5, len = COMP_TABLE_LEN_02E5; \
|
|
else if (ch == 0x02e9) \
|
|
idx = COMP_TABLE_IDX_02E9, len = COMP_TABLE_LEN_02E9; \
|
|
else if (ch == 0x0300) \
|
|
idx = COMP_TABLE_IDX_0300, len = COMP_TABLE_LEN_0300; \
|
|
else if (ch == 0x0301) \
|
|
idx = COMP_TABLE_IDX_0301, len = COMP_TABLE_LEN_0301; \
|
|
else if (ch == 0x309a) \
|
|
idx = COMP_TABLE_IDX_309A, len = COMP_TABLE_LEN_309A; \
|
|
else \
|
|
goto not_combining; \
|
|
\
|
|
do \
|
|
if (comp_table_data[idx].base == (uint16_t) lasttwo) \
|
|
break; \
|
|
while (++idx, --len > 0); \
|
|
\
|
|
if (len > 0) \
|
|
{ \
|
|
/* Output the combined character. */ \
|
|
/* We know the combined character is in JISX0213 plane 1, \
|
|
but the buffered character may have been in JISX0208 or in \
|
|
JISX0213 plane 1. */ \
|
|
size_t need = (lasttwo >> 16 || set != JISX0213_1_set ? 4 : 0); \
|
|
\
|
|
if (__builtin_expect (outptr + need + 2 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
if (need) \
|
|
{ \
|
|
/* But first, output the escape sequence. */ \
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '$'; \
|
|
*outptr++ = '('; \
|
|
*outptr++ = 'O'; \
|
|
set = JISX0213_1_set; \
|
|
} \
|
|
lasttwo = comp_table_data[idx].composed; \
|
|
*outptr++ = (lasttwo >> 8) & 0xff; \
|
|
*outptr++ = lasttwo & 0xff; \
|
|
lasttwo = 0; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
\
|
|
not_combining: \
|
|
/* Output the buffered character. */ \
|
|
/* We know it is in JISX0208 or in JISX0213 plane 1. */ \
|
|
{ \
|
|
size_t need = (lasttwo >> 16 ? 3 : 0); \
|
|
\
|
|
if (__builtin_expect (outptr + need + 2 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
if (need) \
|
|
{ \
|
|
/* But first, output the escape sequence. */ \
|
|
assert (set == JISX0208_1983_set); \
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '$'; \
|
|
*outptr++ = 'B'; \
|
|
} \
|
|
*outptr++ = (lasttwo >> 8) & 0xff; \
|
|
*outptr++ = lasttwo & 0xff; \
|
|
lasttwo = 0; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
\
|
|
/* First see whether we can write the character using the currently \
|
|
selected character set. */ \
|
|
if (set == ASCII_set) \
|
|
{ \
|
|
/* Please note that the NUL byte is *not* matched if we are not \
|
|
currently using the ASCII charset. This is because we must \
|
|
switch to the initial state whenever a NUL byte is written. */ \
|
|
if (ch <= 0x7f) \
|
|
{ \
|
|
*outptr++ = ch; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
/* ISO-2022-JP recommends to encode the newline character always in \
|
|
ASCII since this allows a context-free interpretation of the \
|
|
characters at the beginning of the next line. Otherwise it would \
|
|
have to be known whether the last line ended using ASCII or \
|
|
JIS X 0201. */ \
|
|
else if (set == JISX0201_Roman_set) \
|
|
{ \
|
|
unsigned char buf[1]; \
|
|
if (ucs4_to_jisx0201 (ch, buf) != __UNKNOWN_10646_CHAR \
|
|
&& buf[0] > 0x20 && buf[0] < 0x80) \
|
|
{ \
|
|
*outptr++ = buf[0]; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
else if (set == JISX0201_Kana_set) \
|
|
{ \
|
|
unsigned char buf[1]; \
|
|
if (ucs4_to_jisx0201 (ch, buf) != __UNKNOWN_10646_CHAR \
|
|
&& buf[0] >= 0x80) \
|
|
{ \
|
|
*outptr++ = buf[0] - 0x80; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
else if (/*set == JISX0208_1978_set || */ set == JISX0208_1983_set) \
|
|
{ \
|
|
size_t written = ucs4_to_jisx0208 (ch, outptr, outend - outptr); \
|
|
\
|
|
if (written != __UNKNOWN_10646_CHAR) \
|
|
{ \
|
|
uint32_t jch = ucs4_to_jisx0213 (ch); \
|
|
\
|
|
if (jch & 0x0080) \
|
|
{ \
|
|
/* A possible match in comp_table_data. Buffer it. */ \
|
|
lasttwo = jch & 0x7f7f; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
if (__builtin_expect (written == 0, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
else \
|
|
{ \
|
|
outptr += written; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* (set == JISX0213_1_set || set == JISX0213_2_set) */ \
|
|
uint32_t jch = ucs4_to_jisx0213 (ch); \
|
|
\
|
|
if (jch != 0 \
|
|
&& (set == (jch & 0x8000 ? JISX0213_2_set : JISX0213_1_set))) \
|
|
{ \
|
|
if (jch & 0x0080) \
|
|
{ \
|
|
/* A possible match in comp_table_data. Buffer it. */ \
|
|
\
|
|
/* We know it's a JISX 0213 plane 1 character. */ \
|
|
assert ((jch & 0x8000) == 0); \
|
|
\
|
|
lasttwo = jch & 0x7f7f; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
\
|
|
if (__builtin_expect (outptr + 1 >= outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = (jch >> 8) & 0x7f; \
|
|
*outptr++ = jch & 0x7f; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
} \
|
|
\
|
|
/* The attempts to use the currently selected character set failed, \
|
|
either because the character requires a different character set, \
|
|
or because the character is unknown. */ \
|
|
\
|
|
if (ch <= 0x7f) \
|
|
{ \
|
|
/* We must encode using ASCII. First write out the escape \
|
|
sequence. */ \
|
|
if (__builtin_expect (outptr + 3 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
\
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '('; \
|
|
*outptr++ = 'B'; \
|
|
set = ASCII_set; \
|
|
\
|
|
if (__builtin_expect (outptr >= outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = ch; \
|
|
} \
|
|
else \
|
|
{ \
|
|
unsigned char buf[2]; \
|
|
\
|
|
/* Try JIS X 0201 Roman. */ \
|
|
if (ucs4_to_jisx0201 (ch, buf) != __UNKNOWN_10646_CHAR \
|
|
&& buf[0] > 0x20 && buf[0] < 0x80) \
|
|
{ \
|
|
if (set != JISX0201_Roman_set) \
|
|
{ \
|
|
if (__builtin_expect (outptr + 3 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '('; \
|
|
*outptr++ = 'J'; \
|
|
set = JISX0201_Roman_set; \
|
|
} \
|
|
\
|
|
if (__builtin_expect (outptr >= outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = buf[0]; \
|
|
} \
|
|
else \
|
|
{ \
|
|
uint32_t jch = ucs4_to_jisx0213 (ch); \
|
|
\
|
|
/* Try JIS X 0208. */ \
|
|
size_t written = ucs4_to_jisx0208 (ch, buf, 2); \
|
|
if (written != __UNKNOWN_10646_CHAR) \
|
|
{ \
|
|
if (jch & 0x0080) \
|
|
{ \
|
|
/* A possible match in comp_table_data. Buffer it. */ \
|
|
lasttwo = ((set != JISX0208_1983_set ? 1 : 0) << 16) \
|
|
| (jch & 0x7f7f); \
|
|
set = JISX0208_1983_set; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
\
|
|
if (set != JISX0208_1983_set) \
|
|
{ \
|
|
if (__builtin_expect (outptr + 3 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '$'; \
|
|
*outptr++ = 'B'; \
|
|
set = JISX0208_1983_set; \
|
|
} \
|
|
\
|
|
if (__builtin_expect (outptr + 2 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = buf[0]; \
|
|
*outptr++ = buf[1]; \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* Try JIS X 0213. */ \
|
|
if (jch != 0) \
|
|
{ \
|
|
int new_set = \
|
|
(jch & 0x8000 ? JISX0213_2_set : JISX0213_1_set); \
|
|
\
|
|
if (set != new_set) \
|
|
{ \
|
|
if (__builtin_expect (outptr + 4 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '$'; \
|
|
*outptr++ = '('; \
|
|
*outptr++ = ((new_set - JISX0213_1_set) >> 3) + 'O'; \
|
|
set = new_set; \
|
|
} \
|
|
\
|
|
if (jch & 0x0080) \
|
|
{ \
|
|
/* A possible match in comp_table_data. \
|
|
Buffer it. */ \
|
|
\
|
|
/* We know it's a JIS X 0213 plane 1 character. */ \
|
|
assert ((jch & 0x8000) == 0); \
|
|
\
|
|
lasttwo = jch & 0x7f7f; \
|
|
inptr += 4; \
|
|
continue; \
|
|
} \
|
|
\
|
|
if (__builtin_expect (outptr + 1 >= outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = (jch >> 8) & 0x7f; \
|
|
*outptr++ = jch & 0x7f; \
|
|
} \
|
|
else \
|
|
{ \
|
|
/* Try JIS X 0201 Katakana. This is officially not part \
|
|
of ISO-2022-JP-3. Therefore we try it after all other \
|
|
attempts. */ \
|
|
if (ucs4_to_jisx0201 (ch, buf) != __UNKNOWN_10646_CHAR \
|
|
&& buf[0] >= 0x80) \
|
|
{ \
|
|
if (set != JISX0201_Kana_set) \
|
|
{ \
|
|
if (__builtin_expect (outptr + 3 > outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = ESC; \
|
|
*outptr++ = '('; \
|
|
*outptr++ = 'I'; \
|
|
set = JISX0201_Kana_set; \
|
|
} \
|
|
\
|
|
if (__builtin_expect (outptr >= outend, 0)) \
|
|
{ \
|
|
result = __GCONV_FULL_OUTPUT; \
|
|
break; \
|
|
} \
|
|
*outptr++ = buf[0] - 0x80; \
|
|
} \
|
|
else \
|
|
{ \
|
|
UNICODE_TAG_HANDLER (ch, 4); \
|
|
\
|
|
/* Illegal character. */ \
|
|
STANDARD_TO_LOOP_ERR_HANDLER (4); \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
/* Now that we wrote the output increment the input pointer. */ \
|
|
inptr += 4; \
|
|
}
|
|
#define LOOP_NEED_FLAGS
|
|
#define EXTRA_LOOP_DECLS , int *statep
|
|
#define INIT_PARAMS int set = *statep & CURRENT_SEL_MASK; \
|
|
uint32_t lasttwo = *statep >> 6
|
|
#define UPDATE_PARAMS *statep = set | (lasttwo << 6)
|
|
#include <iconv/loop.c>
|
|
|
|
|
|
/* Now define the toplevel functions. */
|
|
#include <iconv/skeleton.c>
|