glibc/sysdeps/x86_64/fpu/s_expm1l.S
Ulrich Drepper f0e3c47fd6 * sysdeps/ieee754/dbl-64/s_expm1.c: Set errno for overflow.
* sysdeps/ieee754/flt-32/s_expm1f.c: Likewise.
	* sysdeps/x86_64/fpu/s_expm1l.S: Likewise.
2009-04-27 05:31:37 +00:00

90 lines
2.9 KiB
ArmAsm

/* ix87 specific implementation of exp(x)-1.
Copyright (C) 1996,1997,2001,2002,2008,2009 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
Based on code by John C. Bowman <bowman@ipp-garching.mpg.de>.
Corrections by H.J. Lu (hjl@gnu.ai.mit.edu), 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
/* Using: e^x - 1 = 2^(x * log2(e)) - 1 */
#include <machine/asm.h>
#ifdef __ELF__
.section .rodata
#else
.text
#endif
.align ALIGNARG(4)
ASM_TYPE_DIRECTIVE(minus1,@object)
minus1: .double -1.0
ASM_SIZE_DIRECTIVE(minus1)
ASM_TYPE_DIRECTIVE(one,@object)
one: .double 1.0
ASM_SIZE_DIRECTIVE(one)
ASM_TYPE_DIRECTIVE(l2e,@object)
l2e: .tfloat 1.442695040888963407359924681002
ASM_SIZE_DIRECTIVE(l2e)
#ifdef PIC
#define MO(op) op##(%rip)
#else
#define MO(op) op
#endif
.text
ENTRY(__expm1l)
movzwl 8+8(%rsp), %eax // load sign bit and 15-bit exponent
xorb $0x80, %ah // invert sign bit (now 1 is "positive")
cmpl $0xc006, %eax // is num positive and exp >= 6 (number is >= 128.0)?
jae __expl // (if num is denormal, it is at least >= 64.0)
fldt 8(%rsp) // x
fxam // Is NaN or +-Inf?
fstsw %ax
movb $0x45, %ch
andb %ah, %ch
cmpb $0x40, %ch
je 3f // If +-0, jump.
cmpb $0x05, %ch
je 2f // If +-Inf, jump.
fldt MO(l2e) // log2(e) : x
fmulp // log2(e)*x
fld %st // log2(e)*x : log2(e)*x
frndint // int(log2(e)*x) : log2(e)*x
fsubr %st, %st(1) // int(log2(e)*x) : fract(log2(e)*x)
fxch // fract(log2(e)*x) : int(log2(e)*x)
f2xm1 // 2^fract(log2(e)*x)-1 : int(log2(e)*x)
fscale // 2^(log2(e)*x)-2^int(log2(e)*x) : int(log2(e)*x)
fxch // int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x)
fldl MO(one) // 1 : int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x)
fscale // 2^int(log2(e)*x) : int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x)
fsubrl MO(one) // 1-2^int(log2(e)*x) : int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x)
fstp %st(1) // 1-2^int(log2(e)*x) : 2^(log2(e)*x)-2^int(log2(e)*x)
fsubrp %st, %st(1) // 2^(log2(e)*x)-1
ret
2: testl $0x200, %eax // Test sign.
jz 3f // If positive, jump.
fstp %st
fldl MO(minus1) // Set result to -1.0.
3: ret
END(__expm1l)
libm_hidden_def (__expm1l)
weak_alias (__expm1l, expm1l)