mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-11 22:00:08 +00:00
16a59571e4
This operation can be simplified to use simpler multiply-round-convert sequence, which uses fewer instructions and constants. Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
96 lines
3.1 KiB
C
96 lines
3.1 KiB
C
/* Double-precision vector (Advanced SIMD) cos function.
|
|
|
|
Copyright (C) 2023-2024 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include "v_math.h"
|
|
|
|
static const struct data
|
|
{
|
|
float64x2_t poly[7];
|
|
float64x2_t range_val, inv_pi, pi_1, pi_2, pi_3;
|
|
} data = {
|
|
/* Worst-case error is 3.3 ulp in [-pi/2, pi/2]. */
|
|
.poly = { V2 (-0x1.555555555547bp-3), V2 (0x1.1111111108a4dp-7),
|
|
V2 (-0x1.a01a019936f27p-13), V2 (0x1.71de37a97d93ep-19),
|
|
V2 (-0x1.ae633919987c6p-26), V2 (0x1.60e277ae07cecp-33),
|
|
V2 (-0x1.9e9540300a1p-41) },
|
|
.inv_pi = V2 (0x1.45f306dc9c883p-2),
|
|
.pi_1 = V2 (0x1.921fb54442d18p+1),
|
|
.pi_2 = V2 (0x1.1a62633145c06p-53),
|
|
.pi_3 = V2 (0x1.c1cd129024e09p-106),
|
|
.range_val = V2 (0x1p23)
|
|
};
|
|
|
|
#define C(i) d->poly[i]
|
|
|
|
static float64x2_t VPCS_ATTR NOINLINE
|
|
special_case (float64x2_t x, float64x2_t y, uint64x2_t odd, uint64x2_t cmp)
|
|
{
|
|
y = vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), odd));
|
|
return v_call_f64 (cos, x, y, cmp);
|
|
}
|
|
|
|
float64x2_t VPCS_ATTR V_NAME_D1 (cos) (float64x2_t x)
|
|
{
|
|
const struct data *d = ptr_barrier (&data);
|
|
float64x2_t n, r, r2, r3, r4, t1, t2, t3, y;
|
|
uint64x2_t odd, cmp;
|
|
|
|
#if WANT_SIMD_EXCEPT
|
|
r = vabsq_f64 (x);
|
|
cmp = vcgeq_u64 (vreinterpretq_u64_f64 (r),
|
|
vreinterpretq_u64_f64 (d->range_val));
|
|
if (__glibc_unlikely (v_any_u64 (cmp)))
|
|
/* If fenv exceptions are to be triggered correctly, set any special lanes
|
|
to 1 (which is neutral w.r.t. fenv). These lanes will be fixed by
|
|
special-case handler later. */
|
|
r = vbslq_f64 (cmp, v_f64 (1.0), r);
|
|
#else
|
|
cmp = vcageq_f64 (x, d->range_val);
|
|
r = x;
|
|
#endif
|
|
|
|
/* n = rint((|x|+pi/2)/pi) - 0.5. */
|
|
n = vrndaq_f64 (vfmaq_f64 (v_f64 (0.5), r, d->inv_pi));
|
|
odd = vshlq_n_u64 (vreinterpretq_u64_s64 (vcvtq_s64_f64 (n)), 63);
|
|
n = vsubq_f64 (n, v_f64 (0.5f));
|
|
|
|
/* r = |x| - n*pi (range reduction into -pi/2 .. pi/2). */
|
|
r = vfmsq_f64 (r, d->pi_1, n);
|
|
r = vfmsq_f64 (r, d->pi_2, n);
|
|
r = vfmsq_f64 (r, d->pi_3, n);
|
|
|
|
/* sin(r) poly approx. */
|
|
r2 = vmulq_f64 (r, r);
|
|
r3 = vmulq_f64 (r2, r);
|
|
r4 = vmulq_f64 (r2, r2);
|
|
|
|
t1 = vfmaq_f64 (C (4), C (5), r2);
|
|
t2 = vfmaq_f64 (C (2), C (3), r2);
|
|
t3 = vfmaq_f64 (C (0), C (1), r2);
|
|
|
|
y = vfmaq_f64 (t1, C (6), r4);
|
|
y = vfmaq_f64 (t2, y, r4);
|
|
y = vfmaq_f64 (t3, y, r4);
|
|
y = vfmaq_f64 (r, y, r3);
|
|
|
|
if (__glibc_unlikely (v_any_u64 (cmp)))
|
|
return special_case (x, y, odd, cmp);
|
|
return vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), odd));
|
|
}
|