glibc/sysdeps/ieee754/flt-32/e_expf.c
Ulrich Drepper 403a632578 * sysdeps/ieee754/dbl-64/halfulp.c: Mark tab54 as static and const.
* sysdeps/i386/fpu/e_expl.c: Mark c0 and c1 as const.
	* sysdeps/ieee754/flt-32/s_expm1f.c: Make sure huge and tiny end
	up in .rodata.
	* sysdeps/ieee754/flt-32/e_exp2f.c: Make sure TWO127 and TWOM100
	end up in .rodata.
	* sysdeps/ieee754/flt-32/e_expf.c: Likewise.
	* sysdeps/ieee754/dbl-64/e_exp2.c: Make sure TWO1023 and TWOM1000
	end up in .rodata.
2005-12-21 19:12:22 +00:00

148 lines
4.4 KiB
C

/* Single-precision floating point e^x.
Copyright (C) 1997, 1998, 2005 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
/* How this works:
The input value, x, is written as
x = n * ln(2) + t/512 + delta[t] + x;
where:
- n is an integer, 127 >= n >= -150;
- t is an integer, 177 >= t >= -177
- delta is based on a table entry, delta[t] < 2^-28
- x is whatever is left, |x| < 2^-10
Then e^x is approximated as
e^x = 2^n ( e^(t/512 + delta[t])
+ ( e^(t/512 + delta[t])
* ( p(x + delta[t] + n * ln(2)) - delta ) ) )
where
- p(x) is a polynomial approximating e(x)-1;
- e^(t/512 + delta[t]) is obtained from a table.
The table used is the same one as for the double precision version;
since we have the table, we might as well use it.
It turns out to be faster to do calculations in double precision than
to perform an 'accurate table method' expf, because of the range reduction
overhead (compare exp2f).
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include <float.h>
#include <ieee754.h>
#include <math.h>
#include <fenv.h>
#include <inttypes.h>
#include <math_private.h>
extern const float __exp_deltatable[178];
extern const double __exp_atable[355] /* __attribute__((mode(DF))) */;
/* XXX I know the assembler generates a warning about incorrect section
attributes. But without the attribute here the compiler places the
constants in the .data section. Ideally the constant is placed in
.rodata.cst4 so that it can be merged, but gcc sucks, it ICEs when
we try to force this section on it. --drepper */
static const volatile float TWOM100 __attribute__ ((section (".rodata")))
= 7.88860905e-31;
static const volatile float TWO127 __attribute__ ((section (".rodata")))
= 1.7014118346e+38;
float
__ieee754_expf (float x)
{
static const float himark = 88.72283935546875;
static const float lomark = -103.972084045410;
/* Check for usual case. */
if (isless (x, himark) && isgreater (x, lomark))
{
static const float THREEp42 = 13194139533312.0;
static const float THREEp22 = 12582912.0;
/* 1/ln(2). */
#undef M_1_LN2
static const float M_1_LN2 = 1.44269502163f;
/* ln(2) */
#undef M_LN2
static const double M_LN2 = .6931471805599452862;
int tval;
double x22, t, result, dx;
float n, delta;
union ieee754_double ex2_u;
fenv_t oldenv;
feholdexcept (&oldenv);
#ifdef FE_TONEAREST
fesetround (FE_TONEAREST);
#endif
/* Calculate n. */
n = x * M_1_LN2 + THREEp22;
n -= THREEp22;
dx = x - n*M_LN2;
/* Calculate t/512. */
t = dx + THREEp42;
t -= THREEp42;
dx -= t;
/* Compute tval = t. */
tval = (int) (t * 512.0);
if (t >= 0)
delta = - __exp_deltatable[tval];
else
delta = __exp_deltatable[-tval];
/* Compute ex2 = 2^n e^(t/512+delta[t]). */
ex2_u.d = __exp_atable[tval+177];
ex2_u.ieee.exponent += (int) n;
/* Approximate e^(dx+delta) - 1, using a second-degree polynomial,
with maximum error in [-2^-10-2^-28,2^-10+2^-28]
less than 5e-11. */
x22 = (0.5000000496709180453 * dx + 1.0000001192102037084) * dx + delta;
/* Return result. */
fesetenv (&oldenv);
result = x22 * ex2_u.d + ex2_u.d;
return (float) result;
}
/* Exceptional cases: */
else if (isless (x, himark))
{
if (__isinff (x))
/* e^-inf == 0, with no error. */
return 0;
else
/* Underflow */
return TWOM100 * TWOM100;
}
else
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */
return TWO127*x;
}