mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-12 04:00:17 +00:00
ee6189855a
equivalent, but shorter instructions. * sysdeps/unix/sysv/linux/x86_64/sysdep.h: Likewise. * sysdeps/unix/sysv/linux/x86_64/setcontext.S: Likewise. * sysdeps/unix/sysv/linux/x86_64/clone.S: Likewise. * sysdeps/unix/sysv/linux/x86_64/swapcontext.S: Likewise. * sysdeps/unix/x86_64/sysdep.S: Likewise. * sysdeps/x86_64/strchr.S: Likewise. * sysdeps/x86_64/memset.S: Likewise. * sysdeps/x86_64/strcspn.S: Likewise. * sysdeps/x86_64/strcmp.S: Likewise. * sysdeps/x86_64/elf/start.S: Likewise. * sysdeps/x86_64/strspn.S: Likewise. * sysdeps/x86_64/dl-machine.h: Likewise. * sysdeps/x86_64/bsd-_setjmp.S: Likewise. * sysdeps/x86_64/bsd-setjmp.S: Likewise. * sysdeps/x86_64/strtok.S: Likewise.
1432 lines
41 KiB
ArmAsm
1432 lines
41 KiB
ArmAsm
.file "expl_m1.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2003, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
// Contributed 2000 by the Intel Numerics Group, Intel Corporation
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/02/00 Initial Version
|
|
// 04/04/00 Unwind support added
|
|
// 08/15/00 Bundle added after call to __libm_error_support to properly
|
|
// set [the previously overwritten] GR_Parameter_RESULT.
|
|
// 07/07/01 Improved speed of all paths
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double table values
|
|
// 03/11/03 Improved accuracy and performance, corrected missing inexact flags
|
|
// 04/17/03 Eliminated misplaced and unused data label
|
|
// 12/15/03 Eliminated call to error support on expm1l underflow
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Function: Combined expl(x) and expm1l(x), where
|
|
// x
|
|
// expl(x) = e , for double-extended precision x values
|
|
// x
|
|
// expm1l(x) = e - 1 for double-extended precision x values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers: f8 (Input and Return Value)
|
|
// f9-f15,f32-f77
|
|
//
|
|
// General Purpose Registers:
|
|
// r14-r38
|
|
// r35-r38 (Used to pass arguments to error handling routine)
|
|
//
|
|
// Predicate Registers: p6-p15
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// Denormal fault raised on denormal inputs
|
|
// Overflow exceptions raised when appropriate for exp and expm1
|
|
// Underflow exceptions raised when appropriate for exp and expm1
|
|
// (Error Handling Routine called for overflow and Underflow)
|
|
// Inexact raised when appropriate by algorithm
|
|
//
|
|
// exp(inf) = inf
|
|
// exp(-inf) = +0
|
|
// exp(SNaN) = QNaN
|
|
// exp(QNaN) = QNaN
|
|
// exp(0) = 1
|
|
// exp(EM_special Values) = QNaN
|
|
// exp(inf) = inf
|
|
// expm1(-inf) = -1
|
|
// expm1(SNaN) = QNaN
|
|
// expm1(QNaN) = QNaN
|
|
// expm1(0) = 0
|
|
// expm1(EM_special Values) = QNaN
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Implementation and Algorithm Notes:
|
|
//
|
|
// ker_exp_64( in_FR : X,
|
|
// out_FR : Y_hi,
|
|
// out_FR : Y_lo,
|
|
// out_FR : scale,
|
|
// out_PR : Safe )
|
|
//
|
|
// On input, X is in register format
|
|
// p6 for exp,
|
|
// p7 for expm1,
|
|
//
|
|
// On output,
|
|
//
|
|
// scale*(Y_hi + Y_lo) approximates exp(X) if exp
|
|
// scale*(Y_hi + Y_lo) approximates exp(X)-1 if expm1
|
|
//
|
|
// The accuracy is sufficient for a highly accurate 64 sig.
|
|
// bit implementation. Safe is set if there is no danger of
|
|
// overflow/underflow when the result is composed from scale,
|
|
// Y_hi and Y_lo. Thus, we can have a fast return if Safe is set.
|
|
// Otherwise, one must prepare to handle the possible exception
|
|
// appropriately. Note that SAFE not set (false) does not mean
|
|
// that overflow/underflow will occur; only the setting of SAFE
|
|
// guarantees the opposite.
|
|
//
|
|
// **** High Level Overview ****
|
|
//
|
|
// The method consists of three cases.
|
|
//
|
|
// If |X| < Tiny use case exp_tiny;
|
|
// else if |X| < 2^(-m) use case exp_small; m=12 for exp, m=7 for expm1
|
|
// else use case exp_regular;
|
|
//
|
|
// Case exp_tiny:
|
|
//
|
|
// 1 + X can be used to approximate exp(X)
|
|
// X + X^2/2 can be used to approximate exp(X) - 1
|
|
//
|
|
// Case exp_small:
|
|
//
|
|
// Here, exp(X) and exp(X) - 1 can all be
|
|
// appproximated by a relatively simple polynomial.
|
|
//
|
|
// This polynomial resembles the truncated Taylor series
|
|
//
|
|
// exp(w) = 1 + w + w^2/2! + w^3/3! + ... + w^n/n!
|
|
//
|
|
// Case exp_regular:
|
|
//
|
|
// Here we use a table lookup method. The basic idea is that in
|
|
// order to compute exp(X), we accurately decompose X into
|
|
//
|
|
// X = N * log(2)/(2^12) + r, |r| <= log(2)/2^13.
|
|
//
|
|
// Hence
|
|
//
|
|
// exp(X) = 2^( N / 2^12 ) * exp(r).
|
|
//
|
|
// The value 2^( N / 2^12 ) is obtained by simple combinations
|
|
// of values calculated beforehand and stored in table; exp(r)
|
|
// is approximated by a short polynomial because |r| is small.
|
|
//
|
|
// We elaborate this method in 4 steps.
|
|
//
|
|
// Step 1: Reduction
|
|
//
|
|
// The value 2^12/log(2) is stored as a double-extended number
|
|
// L_Inv.
|
|
//
|
|
// N := round_to_nearest_integer( X * L_Inv )
|
|
//
|
|
// The value log(2)/2^12 is stored as two numbers L_hi and L_lo so
|
|
// that r can be computed accurately via
|
|
//
|
|
// r := (X - N*L_hi) - N*L_lo
|
|
//
|
|
// We pick L_hi such that N*L_hi is representable in 64 sig. bits
|
|
// and thus the FMA X - N*L_hi is error free. So r is the
|
|
// 1 rounding error from an exact reduction with respect to
|
|
//
|
|
// L_hi + L_lo.
|
|
//
|
|
// In particular, L_hi has 30 significant bit and can be stored
|
|
// as a double-precision number; L_lo has 64 significant bits and
|
|
// stored as a double-extended number.
|
|
//
|
|
// Step 2: Approximation
|
|
//
|
|
// exp(r) - 1 is approximated by a short polynomial of the form
|
|
//
|
|
// r + A_1 r^2 + A_2 r^3 + A_3 r^4 .
|
|
//
|
|
// Step 3: Composition from Table Values
|
|
//
|
|
// The value 2^( N / 2^12 ) can be composed from a couple of tables
|
|
// of precalculated values. First, express N as three integers
|
|
// K, M_1, and M_2 as
|
|
//
|
|
// N = K * 2^12 + M_1 * 2^6 + M_2
|
|
//
|
|
// Where 0 <= M_1, M_2 < 2^6; and K can be positive or negative.
|
|
// When N is represented in 2's complement, M_2 is simply the 6
|
|
// lsb's, M_1 is the next 6, and K is simply N shifted right
|
|
// arithmetically (sign extended) by 12 bits.
|
|
//
|
|
// Now, 2^( N / 2^12 ) is simply
|
|
//
|
|
// 2^K * 2^( M_1 / 2^6 ) * 2^( M_2 / 2^12 )
|
|
//
|
|
// Clearly, 2^K needs no tabulation. The other two values are less
|
|
// trivial because if we store each accurately to more than working
|
|
// precision, than its product is too expensive to calculate. We
|
|
// use the following method.
|
|
//
|
|
// Define two mathematical values, delta_1 and delta_2, implicitly
|
|
// such that
|
|
//
|
|
// T_1 = exp( [M_1 log(2)/2^6] - delta_1 )
|
|
// T_2 = exp( [M_2 log(2)/2^12] - delta_2 )
|
|
//
|
|
// are representable as 24 significant bits. To illustrate the idea,
|
|
// we show how we define delta_1:
|
|
//
|
|
// T_1 := round_to_24_bits( exp( M_1 log(2)/2^6 ) )
|
|
// delta_1 = (M_1 log(2)/2^6) - log( T_1 )
|
|
//
|
|
// The last equality means mathematical equality. We then tabulate
|
|
//
|
|
// W_1 := exp(delta_1) - 1
|
|
// W_2 := exp(delta_2) - 1
|
|
//
|
|
// Both in double precision.
|
|
//
|
|
// From the tabulated values T_1, T_2, W_1, W_2, we compose the values
|
|
// T and W via
|
|
//
|
|
// T := T_1 * T_2 ...exactly
|
|
// W := W_1 + (1 + W_1)*W_2
|
|
//
|
|
// W approximates exp( delta ) - 1 where delta = delta_1 + delta_2.
|
|
// The mathematical product of T and (W+1) is an accurate representation
|
|
// of 2^(M_1/2^6) * 2^(M_2/2^12).
|
|
//
|
|
// Step 4. Reconstruction
|
|
//
|
|
// Finally, we can reconstruct exp(X), exp(X) - 1.
|
|
// Because
|
|
//
|
|
// X = K * log(2) + (M_1*log(2)/2^6 - delta_1)
|
|
// + (M_2*log(2)/2^12 - delta_2)
|
|
// + delta_1 + delta_2 + r ...accurately
|
|
// We have
|
|
//
|
|
// exp(X) ~=~ 2^K * ( T + T*[exp(delta_1+delta_2+r) - 1] )
|
|
// ~=~ 2^K * ( T + T*[exp(delta + r) - 1] )
|
|
// ~=~ 2^K * ( T + T*[(exp(delta)-1)
|
|
// + exp(delta)*(exp(r)-1)] )
|
|
// ~=~ 2^K * ( T + T*( W + (1+W)*poly(r) ) )
|
|
// ~=~ 2^K * ( Y_hi + Y_lo )
|
|
//
|
|
// where Y_hi = T and Y_lo = T*(W + (1+W)*poly(r))
|
|
//
|
|
// For exp(X)-1, we have
|
|
//
|
|
// exp(X)-1 ~=~ 2^K * ( Y_hi + Y_lo ) - 1
|
|
// ~=~ 2^K * ( Y_hi + Y_lo - 2^(-K) )
|
|
//
|
|
// and we combine Y_hi + Y_lo - 2^(-N) into the form of two
|
|
// numbers Y_hi + Y_lo carefully.
|
|
//
|
|
// **** Algorithm Details ****
|
|
//
|
|
// A careful algorithm must be used to realize the mathematical ideas
|
|
// accurately. We describe each of the three cases. We assume SAFE
|
|
// is preset to be TRUE.
|
|
//
|
|
// Case exp_tiny:
|
|
//
|
|
// The important points are to ensure an accurate result under
|
|
// different rounding directions and a correct setting of the SAFE
|
|
// flag.
|
|
//
|
|
// If expm1 is 1, then
|
|
// SAFE := False ...possibility of underflow
|
|
// Scale := 1.0
|
|
// Y_hi := X
|
|
// Y_lo := 2^(-17000)
|
|
// Else
|
|
// Scale := 1.0
|
|
// Y_hi := 1.0
|
|
// Y_lo := X ...for different rounding modes
|
|
// Endif
|
|
//
|
|
// Case exp_small:
|
|
//
|
|
// Here we compute a simple polynomial. To exploit parallelism, we split
|
|
// the polynomial into several portions.
|
|
//
|
|
// Let r = X
|
|
//
|
|
// If exp ...i.e. exp( argument )
|
|
//
|
|
// rsq := r * r;
|
|
// r4 := rsq*rsq
|
|
// poly_lo := P_3 + r*(P_4 + r*(P_5 + r*P_6))
|
|
// poly_hi := r + rsq*(P_1 + r*P_2)
|
|
// Y_lo := poly_hi + r4 * poly_lo
|
|
// Y_hi := 1.0
|
|
// Scale := 1.0
|
|
//
|
|
// Else ...i.e. exp( argument ) - 1
|
|
//
|
|
// rsq := r * r
|
|
// r4 := rsq * rsq
|
|
// poly_lo := Q_7 + r*(Q_8 + r*Q_9))
|
|
// poly_med:= Q_3 + r*Q_4 + rsq*(Q_5 + r*Q_6)
|
|
// poly_med:= poly_med + r4*poly_lo
|
|
// poly_hi := Q_1 + r*Q_2
|
|
// Y_lo := rsq*(poly_hi + rsq*poly_lo)
|
|
// Y_hi := X
|
|
// Scale := 1.0
|
|
//
|
|
// Endif
|
|
//
|
|
// Case exp_regular:
|
|
//
|
|
// The previous description contain enough information except the
|
|
// computation of poly and the final Y_hi and Y_lo in the case for
|
|
// exp(X)-1.
|
|
//
|
|
// The computation of poly for Step 2:
|
|
//
|
|
// rsq := r*r
|
|
// poly := r + rsq*(A_1 + r*(A_2 + r*A_3))
|
|
//
|
|
// For the case exp(X) - 1, we need to incorporate 2^(-K) into
|
|
// Y_hi and Y_lo at the end of Step 4.
|
|
//
|
|
// If K > 10 then
|
|
// Y_lo := Y_lo - 2^(-K)
|
|
// Else
|
|
// If K < -10 then
|
|
// Y_lo := Y_hi + Y_lo
|
|
// Y_hi := -2^(-K)
|
|
// Else
|
|
// Y_hi := Y_hi - 2^(-K)
|
|
// End If
|
|
// End If
|
|
//
|
|
//=======================================================
|
|
// General Purpose Registers
|
|
//
|
|
GR_ad_Arg = r14
|
|
GR_ad_A = r15
|
|
GR_sig_inv_ln2 = r15
|
|
GR_rshf_2to51 = r16
|
|
GR_ad_PQ = r16
|
|
GR_ad_Q = r16
|
|
GR_signexp_x = r17
|
|
GR_exp_x = r17
|
|
GR_small_exp = r18
|
|
GR_rshf = r18
|
|
GR_exp_mask = r19
|
|
GR_ad_W1 = r20
|
|
GR_exp_2tom51 = r20
|
|
GR_ad_W2 = r21
|
|
GR_exp_underflow = r21
|
|
GR_M2 = r22
|
|
GR_huge_exp = r22
|
|
GR_M1 = r23
|
|
GR_huge_signif = r23
|
|
GR_K = r24
|
|
GR_one = r24
|
|
GR_minus_one = r24
|
|
GR_exp_bias = r25
|
|
GR_ad_Limits = r26
|
|
GR_N_fix = r26
|
|
GR_exp_2_mk = r26
|
|
GR_ad_P = r27
|
|
GR_exp_2_k = r27
|
|
GR_big_expo_neg = r28
|
|
GR_very_small_exp = r29
|
|
GR_exp_half = r29
|
|
GR_ad_T1 = r30
|
|
GR_ad_T2 = r31
|
|
|
|
GR_SAVE_PFS = r32
|
|
GR_SAVE_B0 = r33
|
|
GR_SAVE_GP = r34
|
|
GR_Parameter_X = r35
|
|
GR_Parameter_Y = r36
|
|
GR_Parameter_RESULT = r37
|
|
GR_Parameter_TAG = r38
|
|
|
|
// Floating Point Registers
|
|
//
|
|
FR_norm_x = f9
|
|
FR_RSHF_2TO51 = f10
|
|
FR_INV_LN2_2TO63 = f11
|
|
FR_W_2TO51_RSH = f12
|
|
FR_2TOM51 = f13
|
|
FR_RSHF = f14
|
|
FR_Y_hi = f34
|
|
FR_Y_lo = f35
|
|
FR_scale = f36
|
|
FR_tmp = f37
|
|
FR_float_N = f38
|
|
FR_N_signif = f39
|
|
FR_L_hi = f40
|
|
FR_L_lo = f41
|
|
FR_r = f42
|
|
FR_W1 = f43
|
|
FR_T1 = f44
|
|
FR_W2 = f45
|
|
FR_T2 = f46
|
|
FR_W1_p1 = f47
|
|
FR_rsq = f48
|
|
FR_A2 = f49
|
|
FR_r4 = f50
|
|
FR_A3 = f51
|
|
FR_poly = f52
|
|
FR_T = f53
|
|
FR_W = f54
|
|
FR_Wp1 = f55
|
|
FR_p21 = f59
|
|
FR_p210 = f59
|
|
FR_p65 = f60
|
|
FR_p654 = f60
|
|
FR_p6543 = f60
|
|
FR_2_mk = f61
|
|
FR_P4Q7 = f61
|
|
FR_P4 = f61
|
|
FR_Q7 = f61
|
|
FR_P3Q6 = f62
|
|
FR_P3 = f62
|
|
FR_Q6 = f62
|
|
FR_q65 = f62
|
|
FR_q6543 = f62
|
|
FR_P2Q5 = f63
|
|
FR_P2 = f63
|
|
FR_Q5 = f63
|
|
FR_P1Q4 = f64
|
|
FR_P1 = f64
|
|
FR_Q4 = f64
|
|
FR_q43 = f64
|
|
FR_Q3 = f65
|
|
FR_Q2 = f66
|
|
FR_q21 = f66
|
|
FR_Q1 = f67
|
|
FR_A1 = f68
|
|
FR_P6Q9 = f68
|
|
FR_P6 = f68
|
|
FR_Q9 = f68
|
|
FR_P5Q8 = f69
|
|
FR_P5 = f69
|
|
FR_Q8 = f69
|
|
FR_q987 = f69
|
|
FR_q98 = f69
|
|
FR_q9876543 = f69
|
|
FR_min_oflow_x = f70
|
|
FR_huge_exp = f70
|
|
FR_zero_uflow_x = f71
|
|
FR_huge_signif = f71
|
|
FR_huge = f72
|
|
FR_small = f72
|
|
FR_half = f73
|
|
FR_T_scale = f74
|
|
FR_result_lo = f75
|
|
FR_W_T_scale = f76
|
|
FR_Wp1_T_scale = f77
|
|
FR_ftz = f77
|
|
FR_half_x = f77
|
|
//
|
|
|
|
FR_X = f9
|
|
FR_Y = f0
|
|
FR_RESULT = f15
|
|
|
|
// ************* DO NOT CHANGE ORDER OF THESE TABLES ********************
|
|
|
|
// double-extended 1/ln(2)
|
|
// 3fff b8aa 3b29 5c17 f0bb be87fed0691d3e88
|
|
// 3fff b8aa 3b29 5c17 f0bc
|
|
// For speed the significand will be loaded directly with a movl and setf.sig
|
|
// and the exponent will be bias+63 instead of bias+0. Thus subsequent
|
|
// computations need to scale appropriately.
|
|
// The constant 2^12/ln(2) is needed for the computation of N. This is also
|
|
// obtained by scaling the computations.
|
|
//
|
|
// Two shifting constants are loaded directly with movl and setf.d.
|
|
// 1. RSHF_2TO51 = 1.1000..00 * 2^(63-12)
|
|
// This constant is added to x*1/ln2 to shift the integer part of
|
|
// x*2^12/ln2 into the rightmost bits of the significand.
|
|
// The result of this fma is N_signif.
|
|
// 2. RSHF = 1.1000..00 * 2^(63)
|
|
// This constant is subtracted from N_signif * 2^(-51) to give
|
|
// the integer part of N, N_fix, as a floating-point number.
|
|
// The result of this fms is float_N.
|
|
|
|
RODATA
|
|
.align 64
|
|
LOCAL_OBJECT_START(Constants_exp_64_Arg)
|
|
//data8 0xB8AA3B295C17F0BC,0x0000400B // Inv_L = 2^12/log(2)
|
|
data8 0xB17217F400000000,0x00003FF2 // L_hi = hi part log(2)/2^12
|
|
data8 0xF473DE6AF278ECE6,0x00003FD4 // L_lo = lo part log(2)/2^12
|
|
LOCAL_OBJECT_END(Constants_exp_64_Arg)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_Limits)
|
|
data8 0xb17217f7d1cf79ac,0x0000400c // Smallest long dbl oflow x
|
|
data8 0xb220000000000000,0x0000c00c // Small long dbl uflow zero x
|
|
LOCAL_OBJECT_END(Constants_exp_64_Limits)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_A)
|
|
data8 0xAAAAAAABB1B736A0,0x00003FFA // A3
|
|
data8 0xAAAAAAAB90CD6327,0x00003FFC // A2
|
|
data8 0xFFFFFFFFFFFFFFFF,0x00003FFD // A1
|
|
LOCAL_OBJECT_END(Constants_exp_64_A)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_P)
|
|
data8 0xD00D6C8143914A8A,0x00003FF2 // P6
|
|
data8 0xB60BC4AC30304B30,0x00003FF5 // P5
|
|
data8 0x888888887474C518,0x00003FF8 // P4
|
|
data8 0xAAAAAAAA8DAE729D,0x00003FFA // P3
|
|
data8 0xAAAAAAAAAAAAAF61,0x00003FFC // P2
|
|
data8 0x80000000000004C7,0x00003FFE // P1
|
|
LOCAL_OBJECT_END(Constants_exp_64_P)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_Q)
|
|
data8 0x93F2AC5F7471F32E, 0x00003FE9 // Q9
|
|
data8 0xB8DA0F3550B3E764, 0x00003FEC // Q8
|
|
data8 0xD00D00D0028E89C4, 0x00003FEF // Q7
|
|
data8 0xD00D00DAEB8C4E91, 0x00003FF2 // Q6
|
|
data8 0xB60B60B60B60B6F5, 0x00003FF5 // Q5
|
|
data8 0x888888888886CC23, 0x00003FF8 // Q4
|
|
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFA // Q3
|
|
data8 0xAAAAAAAAAAAAAAAB, 0x00003FFC // Q2
|
|
data8 0x8000000000000000, 0x00003FFE // Q1
|
|
LOCAL_OBJECT_END(Constants_exp_64_Q)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_T1)
|
|
data4 0x3F800000,0x3F8164D2,0x3F82CD87,0x3F843A29
|
|
data4 0x3F85AAC3,0x3F871F62,0x3F88980F,0x3F8A14D5
|
|
data4 0x3F8B95C2,0x3F8D1ADF,0x3F8EA43A,0x3F9031DC
|
|
data4 0x3F91C3D3,0x3F935A2B,0x3F94F4F0,0x3F96942D
|
|
data4 0x3F9837F0,0x3F99E046,0x3F9B8D3A,0x3F9D3EDA
|
|
data4 0x3F9EF532,0x3FA0B051,0x3FA27043,0x3FA43516
|
|
data4 0x3FA5FED7,0x3FA7CD94,0x3FA9A15B,0x3FAB7A3A
|
|
data4 0x3FAD583F,0x3FAF3B79,0x3FB123F6,0x3FB311C4
|
|
data4 0x3FB504F3,0x3FB6FD92,0x3FB8FBAF,0x3FBAFF5B
|
|
data4 0x3FBD08A4,0x3FBF179A,0x3FC12C4D,0x3FC346CD
|
|
data4 0x3FC5672A,0x3FC78D75,0x3FC9B9BE,0x3FCBEC15
|
|
data4 0x3FCE248C,0x3FD06334,0x3FD2A81E,0x3FD4F35B
|
|
data4 0x3FD744FD,0x3FD99D16,0x3FDBFBB8,0x3FDE60F5
|
|
data4 0x3FE0CCDF,0x3FE33F89,0x3FE5B907,0x3FE8396A
|
|
data4 0x3FEAC0C7,0x3FED4F30,0x3FEFE4BA,0x3FF28177
|
|
data4 0x3FF5257D,0x3FF7D0DF,0x3FFA83B3,0x3FFD3E0C
|
|
LOCAL_OBJECT_END(Constants_exp_64_T1)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_T2)
|
|
data4 0x3F800000,0x3F80058C,0x3F800B18,0x3F8010A4
|
|
data4 0x3F801630,0x3F801BBD,0x3F80214A,0x3F8026D7
|
|
data4 0x3F802C64,0x3F8031F2,0x3F803780,0x3F803D0E
|
|
data4 0x3F80429C,0x3F80482B,0x3F804DB9,0x3F805349
|
|
data4 0x3F8058D8,0x3F805E67,0x3F8063F7,0x3F806987
|
|
data4 0x3F806F17,0x3F8074A8,0x3F807A39,0x3F807FCA
|
|
data4 0x3F80855B,0x3F808AEC,0x3F80907E,0x3F809610
|
|
data4 0x3F809BA2,0x3F80A135,0x3F80A6C7,0x3F80AC5A
|
|
data4 0x3F80B1ED,0x3F80B781,0x3F80BD14,0x3F80C2A8
|
|
data4 0x3F80C83C,0x3F80CDD1,0x3F80D365,0x3F80D8FA
|
|
data4 0x3F80DE8F,0x3F80E425,0x3F80E9BA,0x3F80EF50
|
|
data4 0x3F80F4E6,0x3F80FA7C,0x3F810013,0x3F8105AA
|
|
data4 0x3F810B41,0x3F8110D8,0x3F81166F,0x3F811C07
|
|
data4 0x3F81219F,0x3F812737,0x3F812CD0,0x3F813269
|
|
data4 0x3F813802,0x3F813D9B,0x3F814334,0x3F8148CE
|
|
data4 0x3F814E68,0x3F815402,0x3F81599C,0x3F815F37
|
|
LOCAL_OBJECT_END(Constants_exp_64_T2)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_W1)
|
|
data8 0x0000000000000000, 0xBE384454171EC4B4
|
|
data8 0xBE6947414AA72766, 0xBE5D32B6D42518F8
|
|
data8 0x3E68D96D3A319149, 0xBE68F4DA62415F36
|
|
data8 0xBE6DDA2FC9C86A3B, 0x3E6B2E50F49228FE
|
|
data8 0xBE49C0C21188B886, 0x3E64BFC21A4C2F1F
|
|
data8 0xBE6A2FBB2CB98B54, 0x3E5DC5DE9A55D329
|
|
data8 0x3E69649039A7AACE, 0x3E54728B5C66DBA5
|
|
data8 0xBE62B0DBBA1C7D7D, 0x3E576E0409F1AF5F
|
|
data8 0x3E6125001A0DD6A1, 0xBE66A419795FBDEF
|
|
data8 0xBE5CDE8CE1BD41FC, 0xBE621376EA54964F
|
|
data8 0x3E6370BE476E76EE, 0x3E390D1A3427EB92
|
|
data8 0x3E1336DE2BF82BF8, 0xBE5FF1CBD0F7BD9E
|
|
data8 0xBE60A3550CEB09DD, 0xBE5CA37E0980F30D
|
|
data8 0xBE5C541B4C082D25, 0xBE5BBECA3B467D29
|
|
data8 0xBE400D8AB9D946C5, 0xBE5E2A0807ED374A
|
|
data8 0xBE66CB28365C8B0A, 0x3E3AAD5BD3403BCA
|
|
data8 0x3E526055C7EA21E0, 0xBE442C75E72880D6
|
|
data8 0x3E58B2BB85222A43, 0xBE5AAB79522C42BF
|
|
data8 0xBE605CB4469DC2BC, 0xBE589FA7A48C40DC
|
|
data8 0xBE51C2141AA42614, 0xBE48D087C37293F4
|
|
data8 0x3E367A1CA2D673E0, 0xBE51BEBB114F7A38
|
|
data8 0xBE6348E5661A4B48, 0xBDF526431D3B9962
|
|
data8 0x3E3A3B5E35A78A53, 0xBE46C46C1CECD788
|
|
data8 0xBE60B7EC7857D689, 0xBE594D3DD14F1AD7
|
|
data8 0xBE4F9C304C9A8F60, 0xBE52187302DFF9D2
|
|
data8 0xBE5E4C8855E6D68F, 0xBE62140F667F3DC4
|
|
data8 0xBE36961B3BF88747, 0x3E602861C96EC6AA
|
|
data8 0xBE3B5151D57FD718, 0x3E561CD0FC4A627B
|
|
data8 0xBE3A5217CA913FEA, 0x3E40A3CC9A5D193A
|
|
data8 0xBE5AB71310A9C312, 0x3E4FDADBC5F57719
|
|
data8 0x3E361428DBDF59D5, 0x3E5DB5DB61B4180D
|
|
data8 0xBE42AD5F7408D856, 0x3E2A314831B2B707
|
|
LOCAL_OBJECT_END(Constants_exp_64_W1)
|
|
|
|
LOCAL_OBJECT_START(Constants_exp_64_W2)
|
|
data8 0x0000000000000000, 0xBE641F2537A3D7A2
|
|
data8 0xBE68DD57AD028C40, 0xBE5C77D8F212B1B6
|
|
data8 0x3E57878F1BA5B070, 0xBE55A36A2ECAE6FE
|
|
data8 0xBE620608569DFA3B, 0xBE53B50EA6D300A3
|
|
data8 0x3E5B5EF2223F8F2C, 0xBE56A0D9D6DE0DF4
|
|
data8 0xBE64EEF3EAE28F51, 0xBE5E5AE2367EA80B
|
|
data8 0x3E47CB1A5FCBC02D, 0xBE656BA09BDAFEB7
|
|
data8 0x3E6E70C6805AFEE7, 0xBE6E0509A3415EBA
|
|
data8 0xBE56856B49BFF529, 0x3E66DD3300508651
|
|
data8 0x3E51165FC114BC13, 0x3E53333DC453290F
|
|
data8 0x3E6A072B05539FDA, 0xBE47CD877C0A7696
|
|
data8 0xBE668BF4EB05C6D9, 0xBE67C3E36AE86C93
|
|
data8 0xBE533904D0B3E84B, 0x3E63E8D9556B53CE
|
|
data8 0x3E212C8963A98DC8, 0xBE33138F032A7A22
|
|
data8 0x3E530FA9BC584008, 0xBE6ADF82CCB93C97
|
|
data8 0x3E5F91138370EA39, 0x3E5443A4FB6A05D8
|
|
data8 0x3E63DACD181FEE7A, 0xBE62B29DF0F67DEC
|
|
data8 0x3E65C4833DDE6307, 0x3E5BF030D40A24C1
|
|
data8 0x3E658B8F14E437BE, 0xBE631C29ED98B6C7
|
|
data8 0x3E6335D204CF7C71, 0x3E529EEDE954A79D
|
|
data8 0x3E5D9257F64A2FB8, 0xBE6BED1B854ED06C
|
|
data8 0x3E5096F6D71405CB, 0xBE3D4893ACB9FDF5
|
|
data8 0xBDFEB15801B68349, 0x3E628D35C6A463B9
|
|
data8 0xBE559725ADE45917, 0xBE68C29C042FC476
|
|
data8 0xBE67593B01E511FA, 0xBE4A4313398801ED
|
|
data8 0x3E699571DA7C3300, 0x3E5349BE08062A9E
|
|
data8 0x3E5229C4755BB28E, 0x3E67E42677A1F80D
|
|
data8 0xBE52B33F6B69C352, 0xBE6B3550084DA57F
|
|
data8 0xBE6DB03FD1D09A20, 0xBE60CBC42161B2C1
|
|
data8 0x3E56ED9C78A2B771, 0xBE508E319D0FA795
|
|
data8 0xBE59482AFD1A54E9, 0xBE2A17CEB07FD23E
|
|
data8 0x3E68BF5C17365712, 0x3E3956F9B3785569
|
|
LOCAL_OBJECT_END(Constants_exp_64_W2)
|
|
|
|
|
|
.section .text
|
|
|
|
GLOBAL_IEEE754_ENTRY(expm1l)
|
|
|
|
//
|
|
// Set p7 true for expm1, p6 false
|
|
//
|
|
|
|
{ .mlx
|
|
getf.exp GR_signexp_x = f8 // Get sign and exponent of x, redo if unorm
|
|
movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
|
|
}
|
|
{ .mlx
|
|
addl GR_ad_Arg = @ltoff(Constants_exp_64_Arg#),gp
|
|
movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
|
|
fclass.m p8, p0 = f8, 0x1E7 // Test x for natval, nan, inf, zero
|
|
cmp.eq p7, p6 = r0, r0
|
|
}
|
|
{ .mfb
|
|
mov GR_exp_half = 0x0FFFE // Exponent of 0.5, for very small path
|
|
fnorm.s1 FR_norm_x = f8 // Normalize x
|
|
br.cond.sptk exp_continue
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(expm1l)
|
|
|
|
|
|
GLOBAL_IEEE754_ENTRY(expl)
|
|
//
|
|
// Set p7 false for exp, p6 true
|
|
//
|
|
{ .mlx
|
|
getf.exp GR_signexp_x = f8 // Get sign and exponent of x, redo if unorm
|
|
movl GR_sig_inv_ln2 = 0xb8aa3b295c17f0bc // significand of 1/ln2
|
|
}
|
|
{ .mlx
|
|
addl GR_ad_Arg = @ltoff(Constants_exp_64_Arg#),gp
|
|
movl GR_rshf_2to51 = 0x4718000000000000 // 1.10000 2^(63+51)
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 GR_ad_Arg = [GR_ad_Arg] // Point to Arg table
|
|
fclass.m p8, p0 = f8, 0x1E7 // Test x for natval, nan, inf, zero
|
|
cmp.eq p6, p7 = r0, r0
|
|
}
|
|
{ .mfi
|
|
mov GR_exp_half = 0x0FFFE // Exponent of 0.5, for very small path
|
|
fnorm.s1 FR_norm_x = f8 // Normalize x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
exp_continue:
|
|
// Form two constants we need
|
|
// 1/ln2 * 2^63 to compute w = x * 1/ln2 * 128
|
|
// 1.1000..000 * 2^(63+63-12) to right shift int(N) into the significand
|
|
|
|
{ .mfi
|
|
setf.sig FR_INV_LN2_2TO63 = GR_sig_inv_ln2 // form 1/ln2 * 2^63
|
|
fclass.nm.unc p9, p0 = f8, 0x1FF // Test x for unsupported
|
|
mov GR_exp_2tom51 = 0xffff-51
|
|
}
|
|
{ .mlx
|
|
setf.d FR_RSHF_2TO51 = GR_rshf_2to51 // Form const 1.1000 * 2^(63+51)
|
|
movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_half = GR_exp_half // Form 0.5 for very small path
|
|
fma.s1 FR_scale = f1,f1,f0 // Scale = 1.0
|
|
mov GR_exp_bias = 0x0FFFF // Set exponent bias
|
|
}
|
|
{ .mib
|
|
add GR_ad_Limits = 0x20, GR_ad_Arg // Point to Limits table
|
|
mov GR_exp_mask = 0x1FFFF // Form exponent mask
|
|
(p8) br.cond.spnt EXP_64_SPECIAL // Branch if natval, nan, inf, zero
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_2TOM51 = GR_exp_2tom51 // Form 2^-51 for scaling float_N
|
|
nop.f 999
|
|
add GR_ad_A = 0x40, GR_ad_Arg // Point to A table
|
|
}
|
|
{ .mib
|
|
setf.d FR_RSHF = GR_rshf // Form right shift const 1.1000 * 2^63
|
|
add GR_ad_T1 = 0x160, GR_ad_Arg // Point to T1 table
|
|
(p9) br.cond.spnt EXP_64_UNSUPPORTED // Branch if unsupported
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfi
|
|
ldfe FR_L_hi = [GR_ad_Arg],16 // Get L_hi
|
|
fcmp.eq.s0 p9,p0 = f8, f0 // Dummy op to flag denormals
|
|
(p6) add GR_ad_PQ = 0x30, GR_ad_A // Point to P table for exp
|
|
}
|
|
{ .mfi
|
|
ldfe FR_min_oflow_x = [GR_ad_Limits],16 // Get min x to cause overflow
|
|
fmpy.s1 FR_rsq = f8, f8 // rsq = x * x for small path
|
|
(p7) add GR_ad_PQ = 0x90, GR_ad_A // Point to Q table for expm1
|
|
};;
|
|
|
|
{ .mmi
|
|
ldfe FR_L_lo = [GR_ad_Arg],16 // Get L_lo
|
|
ldfe FR_zero_uflow_x = [GR_ad_Limits],16 // Get x for zero uflow result
|
|
add GR_ad_W1 = 0x200, GR_ad_T1 // Point to W1 table
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_P6Q9 = [GR_ad_PQ],16 // P6(exp) or Q9(expm1) for small path
|
|
mov FR_r = FR_norm_x // r = X for small path
|
|
mov GR_very_small_exp = -60 // Exponent of x for very small path
|
|
}
|
|
{ .mfi
|
|
add GR_ad_W2 = 0x400, GR_ad_T1 // Point to W2 table
|
|
nop.f 999
|
|
(p7) mov GR_small_exp = -7 // Exponent of x for small path expm1
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe FR_P5Q8 = [GR_ad_PQ],16 // P5(exp) or Q8(expm1) for small path
|
|
and GR_exp_x = GR_signexp_x, GR_exp_mask
|
|
(p6) mov GR_small_exp = -12 // Exponent of x for small path exp
|
|
}
|
|
;;
|
|
|
|
// N_signif = X * Inv_log2_by_2^12
|
|
// By adding 1.10...0*2^63 we shift and get round_int(N_signif) in significand.
|
|
// We actually add 1.10...0*2^51 to X * Inv_log2 to do the same thing.
|
|
{ .mfi
|
|
ldfe FR_P4Q7 = [GR_ad_PQ],16 // P4(exp) or Q7(expm1) for small path
|
|
fma.s1 FR_N_signif = FR_norm_x, FR_INV_LN2_2TO63, FR_RSHF_2TO51
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
sub GR_exp_x = GR_exp_x, GR_exp_bias // Get exponent
|
|
fmpy.s1 FR_r4 = FR_rsq, FR_rsq // Form r4 for small path
|
|
cmp.eq.unc p15, p0 = r0, r0 // Set Safe as default
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfe FR_P3Q6 = [GR_ad_PQ],16 // P3(exp) or Q6(expm1) for small path
|
|
cmp.lt p14, p0 = GR_exp_x, GR_very_small_exp // Is |x| < 2^-60?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_P2Q5 = [GR_ad_PQ],16 // P2(exp) or Q5(expm1) for small path
|
|
fmpy.s1 FR_half_x = FR_half, FR_norm_x // 0.5 * x for very small path
|
|
cmp.lt p13, p0 = GR_exp_x, GR_small_exp // Is |x| < 2^-m?
|
|
}
|
|
{ .mib
|
|
nop.m 999
|
|
nop.i 999
|
|
(p14) br.cond.spnt EXP_VERY_SMALL // Branch if |x| < 2^-60
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_A3 = [GR_ad_A],16 // Get A3 for normal path
|
|
fcmp.ge.s1 p10,p0 = FR_norm_x, FR_min_oflow_x // Will result overflow?
|
|
mov GR_big_expo_neg = -16381 // -0x3ffd
|
|
}
|
|
{ .mfb
|
|
ldfe FR_P1Q4 = [GR_ad_PQ],16 // P1(exp) or Q4(expm1) for small path
|
|
nop.f 999
|
|
(p13) br.cond.spnt EXP_SMALL // Branch if |x| < 2^-m
|
|
// m=12 for exp, m=7 for expm1
|
|
}
|
|
;;
|
|
|
|
// Now we are on the main path for |x| >= 2^-m, m=12 for exp, m=7 for expm1
|
|
//
|
|
// float_N = round_int(N_signif)
|
|
// The signficand of N_signif contains the rounded integer part of X * 2^12/ln2,
|
|
// as a twos complement number in the lower bits (that is, it may be negative).
|
|
// That twos complement number (called N) is put into GR_N.
|
|
|
|
// Since N_signif is scaled by 2^51, it must be multiplied by 2^-51
|
|
// before the shift constant 1.10000 * 2^63 is subtracted to yield float_N.
|
|
// Thus, float_N contains the floating point version of N
|
|
|
|
|
|
{ .mfi
|
|
ldfe FR_A2 = [GR_ad_A],16 // Get A2 for main path
|
|
fcmp.lt.s1 p11,p0 = FR_norm_x, FR_zero_uflow_x // Certain zero, uflow?
|
|
add GR_ad_T2 = 0x100, GR_ad_T1 // Point to T2 table
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 FR_float_N = FR_N_signif, FR_2TOM51, FR_RSHF // Form float_N
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mbb
|
|
getf.sig GR_N_fix = FR_N_signif // Get N from significand
|
|
(p10) br.cond.spnt EXP_OVERFLOW // Branch if result will overflow
|
|
(p11) br.cond.spnt EXP_CERTAIN_UNDERFLOW_ZERO // Branch if certain zero, uflow
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_A1 = [GR_ad_A],16 // Get A1 for main path
|
|
fnma.s1 FR_r = FR_L_hi, FR_float_N, FR_norm_x // r = -L_hi * float_N + x
|
|
extr.u GR_M1 = GR_N_fix, 6, 6 // Extract index M_1
|
|
}
|
|
{ .mfi
|
|
and GR_M2 = 0x3f, GR_N_fix // Extract index M_2
|
|
nop.f 999
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// N_fix is only correct up to 50 bits because of our right shift technique.
|
|
// Actually in the normal path we will have restricted K to about 14 bits.
|
|
// Somewhat arbitrarily we extract 32 bits.
|
|
{ .mfi
|
|
shladd GR_ad_W1 = GR_M1,3,GR_ad_W1 // Point to W1
|
|
nop.f 999
|
|
extr GR_K = GR_N_fix, 12, 32 // Extract limited range K
|
|
}
|
|
{ .mfi
|
|
shladd GR_ad_T1 = GR_M1,2,GR_ad_T1 // Point to T1
|
|
nop.f 999
|
|
shladd GR_ad_T2 = GR_M2,2,GR_ad_T2 // Point to T2
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfs FR_T1 = [GR_ad_T1],0 // Get T1
|
|
ldfd FR_W1 = [GR_ad_W1],0 // Get W1
|
|
add GR_exp_2_k = GR_exp_bias, GR_K // Form exponent of 2^k
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ldfs FR_T2 = [GR_ad_T2],0 // Get T2
|
|
shladd GR_ad_W2 = GR_M2,3,GR_ad_W2 // Point to W2
|
|
sub GR_exp_2_mk = GR_exp_bias, GR_K // Form exponent of 2^-k
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
ldfd FR_W2 = [GR_ad_W2],0 // Get W2
|
|
setf.exp FR_scale = GR_exp_2_k // Set scale = 2^k
|
|
fnma.s1 FR_r = FR_L_lo, FR_float_N, FR_r // r = -L_lo * float_N + r
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_2_mk = GR_exp_2_mk // Form 2^-k
|
|
fma.s1 FR_poly = FR_r, FR_A3, FR_A2 // poly = r * A3 + A2
|
|
cmp.lt p8,p15 = GR_K,GR_big_expo_neg // Set Safe if K > big_expo_neg
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 FR_rsq = FR_r, FR_r // rsq = r * r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 FR_T = FR_T1, FR_T2 // T = T1 * T2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_W1_p1 = FR_W1, f1 // W1_p1 = W1 + 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) cmp.lt.unc p8, p9 = 10, GR_K // If expm1, set p8 if K > 10
|
|
fma.s1 FR_poly = FR_r, FR_poly, FR_A1 // poly = r * poly + A1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) cmp.eq p15, p0 = r0, r0 // If expm1, set Safe flag
|
|
fma.s1 FR_T_scale = FR_T, FR_scale, f0 // T_scale = T * scale
|
|
(p9) cmp.gt.unc p9, p10 = -10, GR_K // If expm1, set p9 if K < -10
|
|
// If expm1, set p10 if -10<=K<=10
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_W = FR_W2, FR_W1_p1, FR_W1 // W = W2 * (W1+1.0) + W1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
mov FR_Y_hi = FR_T // Assume Y_hi = T
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_poly = FR_rsq, FR_poly, FR_r // poly = rsq * poly + r
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_Wp1_T_scale = FR_W, FR_T_scale, FR_T_scale // (W+1)*T*scale
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_W_T_scale = FR_W, FR_T_scale, f0 // W*T*scale
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 FR_Y_hi = f0, FR_2_mk // If expm1, if K < -10 set Y_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fsub.s1 FR_Y_hi = FR_T, FR_2_mk // If expm1, if |K|<=10 set Y_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 FR_result_lo = FR_Wp1_T_scale, FR_poly, FR_W_T_scale
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p8,p9
|
|
// If K > 10 adjust result_lo = result_lo - scale * 2^-k
|
|
// If |K| <= 10 adjust result_lo = result_lo + scale * T
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fnma.s1 FR_result_lo = FR_scale, FR_2_mk, FR_result_lo // If K > 10
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fma.s1 FR_result_lo = FR_T_scale, f1, FR_result_lo // If |K| <= 10
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 FR_tmp = FR_A1, FR_A1 // Dummy op to set inexact
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p15) fma.s0 f8 = FR_Y_hi, FR_scale, FR_result_lo // Safe result
|
|
(p15) br.ret.sptk b0 // Safe exit for normal path
|
|
}
|
|
;;
|
|
|
|
// Here if unsafe, will only be here for exp with K < big_expo_neg
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 FR_RESULT = FR_Y_hi, FR_scale, FR_result_lo // Prelim result
|
|
br.cond.sptk EXP_POSSIBLE_UNDERFLOW // Branch to unsafe code
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_SMALL:
|
|
// Here if 2^-60 < |x| < 2^-m, m=12 for exp, m=7 for expm1
|
|
{ .mfi
|
|
(p7) ldfe FR_Q3 = [GR_ad_Q],16 // Get Q3 for small path, if expm1
|
|
(p6) fma.s1 FR_p65 = FR_P6, FR_r, FR_P5 // If exp, p65 = P6 * r + P5
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
mov GR_minus_one = -1
|
|
(p7) fma.s1 FR_q98 = FR_Q9, FR_r, FR_Q8 // If expm1, q98 = Q9 * r + Q8
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) ldfe FR_Q2 = [GR_ad_Q],16 // Get Q2 for small path, if expm1
|
|
(p7) fma.s1 FR_q65 = FR_Q6, FR_r, FR_Q5 // If expm1, q65 = Q6 * r + Q5
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.sig FR_tmp = GR_minus_one // Create value to force inexact
|
|
(p6) fma.s1 FR_p21 = FR_P2, FR_r, FR_P1 // If exp, p21 = P2 * r + P1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
(p7) ldfe FR_Q1 = [GR_ad_Q],16 // Get Q1 for small path, if expm1
|
|
(p7) fma.s1 FR_q43 = FR_Q4, FR_r, FR_Q3 // If expm1, q43 = Q4 * r + Q3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_p654 = FR_p65, FR_r, FR_P4 // If exp, p654 = p65 * r + P4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q987 = FR_q98, FR_r, FR_Q7 // If expm1, q987 = q98 * r + Q7
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q21 = FR_Q2, FR_r, FR_Q1 // If expm1, q21 = Q2 * r + Q1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_p210 = FR_p21, FR_rsq, FR_r // If exp, p210 = p21 * r + P0
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q6543 = FR_q65, FR_rsq, FR_q43 // If expm1, q6543 = q65*r2+q43
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_p6543 = FR_p654, FR_r, FR_P3 // If exp, p6543 = p654 * r + P3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_q9876543 = FR_q987, FR_r4, FR_q6543 // If expm1, q9876543 = ...
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s1 FR_Y_lo = FR_p6543, FR_r4, FR_p210 // If exp, form Y_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fma.s1 FR_Y_lo = FR_q9876543, FR_rsq, FR_q21 // If expm1, form Y_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 FR_tmp = FR_tmp, FR_tmp // Dummy op to set inexact
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fma.s0 f8 = FR_Y_lo, f1, f1 // If exp, result = 1 + Y_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fma.s0 f8 = FR_Y_lo, FR_rsq, FR_norm_x // If expm1, result = Y_lo*r2+x
|
|
br.ret.sptk b0 // Exit for 2^-60 <= |x| < 2^-m
|
|
// m=12 for exp, m=7 for expm1
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_VERY_SMALL:
|
|
//
|
|
// Here if 0 < |x| < 2^-60
|
|
// If exp, result = 1.0 + x
|
|
// If expm1, result = x +x*x/2, but have to check for possible underflow
|
|
//
|
|
|
|
{ .mfi
|
|
(p7) mov GR_exp_underflow = -16381 // Exponent for possible underflow
|
|
(p6) fadd.s0 f8 = f1, FR_norm_x // If exp, result = 1+x
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fmpy.s1 FR_result_lo = FR_half_x, FR_norm_x // If expm1 result_lo = x*x/2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p7) cmp.lt.unc p0, p8 = GR_exp_x, GR_exp_underflow // Unsafe if expm1 x small
|
|
(p7) mov FR_Y_hi = FR_norm_x // If expm1, Y_hi = x
|
|
(p7) cmp.lt p0, p15 = GR_exp_x, GR_exp_underflow // Unsafe if expm1 x small
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p8) fma.s0 f8 = FR_norm_x, f1, FR_result_lo // If expm1, result=x+x*x/2
|
|
(p15) br.ret.sptk b0 // If Safe, exit
|
|
}
|
|
;;
|
|
|
|
// Here if expm1 and 0 < |x| < 2^-16381; may be possible underflow
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 FR_RESULT = FR_Y_hi, FR_scale, FR_result_lo // Prelim result
|
|
br.cond.sptk EXP_POSSIBLE_UNDERFLOW // Branch to unsafe code
|
|
}
|
|
;;
|
|
|
|
EXP_CERTAIN_UNDERFLOW_ZERO:
|
|
// Here if x < zero_uflow_x
|
|
// For exp, set result to tiny+0.0 and set I, U, and branch to error handling
|
|
// For expm1, set result to tiny-1.0 and set I, and exit
|
|
{ .mmi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
|
|
nop.m 999
|
|
mov GR_one = 1
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.exp FR_small = GR_one // Form small value
|
|
nop.m 999
|
|
(p6) mov GR_Parameter_TAG = 13 // Error tag for exp underflow
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.s FR_X = f8,f8 // Save x for error call
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
.pred.rel "mutex",p6,p7
|
|
{ .mfb
|
|
nop.m 999
|
|
(p6) fma.s0 FR_RESULT = FR_small, FR_small, f0 // If exp, set I,U, tiny result
|
|
(p6) br.cond.sptk __libm_error_region // If exp, go to error handling
|
|
}
|
|
{ .mfb
|
|
nop.m 999
|
|
(p7) fms.s0 f8 = FR_small, FR_small, f1 // If expm1, set I, result -1.0
|
|
(p7) br.ret.sptk b0 // If expm1, exit
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_OVERFLOW:
|
|
// Here if x >= min_oflow_x
|
|
{ .mmi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
|
|
mov GR_huge_exp = 0x1fffe
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
mov GR_huge_signif = -0x1
|
|
nop.f 999
|
|
(p6) mov GR_Parameter_TAG = 12 // Error tag for exp overflow
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
setf.exp FR_huge_exp = GR_huge_exp // Create huge value
|
|
setf.sig FR_huge_signif = GR_huge_signif // Create huge value
|
|
fmerge.s FR_X = f8,f8 // Save x for error call
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmerge.se FR_huge = FR_huge_exp, FR_huge_signif
|
|
(p7) mov GR_Parameter_TAG = 39 // Error tag for expm1 overflow
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s0 FR_RESULT = FR_huge, FR_huge, FR_huge // Force I, O, and Inf
|
|
br.cond.sptk __libm_error_region // Branch to error handling
|
|
}
|
|
;;
|
|
|
|
|
|
|
|
EXP_POSSIBLE_UNDERFLOW:
|
|
// Here if exp and zero_uflow_x < x < about -11356 [where k < -16381]
|
|
// Here if expm1 and |x| < 2^-16381
|
|
{ .mfi
|
|
alloc GR_SAVE_PFS = ar.pfs,0,3,4,0
|
|
fsetc.s2 0x7F,0x41 // Set FTZ and disable traps
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s2 FR_ftz = FR_Y_hi, FR_scale, FR_result_lo // Result with FTZ
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsetc.s2 0x7F,0x40 // Disable traps (set s2 default)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p11, p0 = FR_ftz, 0x00F // If exp, FTZ result denorm or zero?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
(p11) mov GR_Parameter_TAG = 13 // exp underflow
|
|
fmerge.s FR_X = f8,f8 // Save x for error call
|
|
(p11) br.cond.spnt __libm_error_region // Branch on exp underflow
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
mov f8 = FR_RESULT // Was safe after all
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_64_SPECIAL:
|
|
// Here if x natval, nan, inf, zero
|
|
// If x natval, +inf, or if expm1 and x zero, just return x.
|
|
// The other cases must be tested for, and results set.
|
|
// These cases do not generate exceptions.
|
|
{ .mfi
|
|
nop.m 999
|
|
fclass.m p8, p0 = f8, 0x0c3 // Is x nan?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p13, p0 = f8, 0x007 // If exp, is x zero?
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p6) fclass.m.unc p11, p0 = f8, 0x022 // If exp, is x -inf?
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fadd.s0 f8 = f8, f1 // If x nan, result quietized x
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p7) fclass.m.unc p10, p0 = f8, 0x022 // If expm1, is x -inf?
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fadd.s0 f8 = f0, f1 // If exp and x zero, result 1.0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) mov f8 = f0 // If exp and x -inf, result 0
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfb
|
|
nop.m 999
|
|
(p10) fsub.s1 f8 = f0, f1 // If expm1, x -inf, result -1.0
|
|
br.ret.sptk b0 // Exit special cases
|
|
}
|
|
;;
|
|
|
|
|
|
EXP_64_UNSUPPORTED:
|
|
// Here if x unsupported type
|
|
{ .mfb
|
|
nop.m 999
|
|
fmpy.s0 f8 = f8, f0 // Return nan
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(expl)
|
|
|
|
LOCAL_LIBM_ENTRY(__libm_error_region)
|
|
.prologue
|
|
{ .mfi
|
|
add GR_Parameter_Y=-32,sp // Parameter 2 value
|
|
nop.f 0
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS=ar.pfs // Save ar.pfs
|
|
}
|
|
{ .mfi
|
|
.fframe 64
|
|
add sp=-64,sp // Create new stack
|
|
nop.f 0
|
|
mov GR_SAVE_GP=gp // Save gp
|
|
};;
|
|
{ .mmi
|
|
stfe [GR_Parameter_Y] = FR_Y,16 // Save Parameter 2 on stack
|
|
add GR_Parameter_X = 16,sp // Parameter 1 address
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0=b0 // Save b0
|
|
};;
|
|
.body
|
|
{ .mib
|
|
stfe [GR_Parameter_X] = FR_X // Store Parameter 1 on stack
|
|
add GR_Parameter_RESULT = 0,GR_Parameter_Y
|
|
nop.b 0 // Parameter 3 address
|
|
}
|
|
{ .mib
|
|
stfe [GR_Parameter_Y] = FR_RESULT // Store Parameter 3 on stack
|
|
add GR_Parameter_Y = -16,GR_Parameter_Y
|
|
br.call.sptk b0=__libm_error_support# // Call error handling function
|
|
};;
|
|
{ .mmi
|
|
add GR_Parameter_RESULT = 48,sp
|
|
nop.m 0
|
|
nop.i 0
|
|
};;
|
|
{ .mmi
|
|
ldfe f8 = [GR_Parameter_RESULT] // Get return result off stack
|
|
.restore sp
|
|
add sp = 64,sp // Restore stack pointer
|
|
mov b0 = GR_SAVE_B0 // Restore return address
|
|
};;
|
|
{ .mib
|
|
mov gp = GR_SAVE_GP // Restore gp
|
|
mov ar.pfs = GR_SAVE_PFS // Restore ar.pfs
|
|
br.ret.sptk b0 // Return
|
|
};;
|
|
LOCAL_LIBM_END(__libm_error_region#)
|
|
|
|
.type __libm_error_support#,@function
|
|
.global __libm_error_support#
|