glibc/sysdeps/i386/fpu/s_nextafterl.c
Joseph Myers 8cbd1453ec Fix x86/x86_64 nextafterl incrementing negative subnormals (bug 20205).
The x86 / x86_64 implementation of nextafterl (also used for
nexttowardl) produces incorrect results (NaNs) when negative
subnormals, the low 32 bits of whose mantissa are zero, are
incremented towards zero.  This patch fixes this by disabling the
logic to decrement the exponent in that case.

Tested for x86_64 and x86.

	[BZ #20205]
	* sysdeps/i386/fpu/s_nextafterl.c (__nextafterl): Do not adjust
	exponent when incrementing negative subnormal with low mantissa
	word zero.
	* math/libm-test.inc (nextafter_test_data) [TEST_COND_intel96]:
	Add another test.
2016-06-03 21:30:12 +00:00

126 lines
3.0 KiB
C

/* s_nextafterl.c -- long double version of s_nextafter.c.
* Special version for i387.
* Conversion to long double by Ulrich Drepper,
* Cygnus Support, drepper@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: $";
#endif
/* IEEE functions
* nextafterl(x,y)
* return the next machine floating-point number of x in the
* direction toward y.
* Special cases:
*/
#include <errno.h>
#include <math.h>
#include <math_private.h>
long double __nextafterl(long double x, long double y)
{
u_int32_t hx,hy,ix,iy;
u_int32_t lx,ly;
int32_t esx,esy;
GET_LDOUBLE_WORDS(esx,hx,lx,x);
GET_LDOUBLE_WORDS(esy,hy,ly,y);
ix = esx&0x7fff; /* |x| */
iy = esy&0x7fff; /* |y| */
/* Intel's extended format has the normally implicit 1 explicit
present. Sigh! */
if(((ix==0x7fff)&&(((hx&0x7fffffff)|lx)!=0)) || /* x is nan */
((iy==0x7fff)&&(((hy&0x7fffffff)|ly)!=0))) /* y is nan */
return x+y;
if(x==y) return y; /* x=y, return y */
if((ix|hx|lx)==0) { /* x == 0 */
long double u;
SET_LDOUBLE_WORDS(x,esy&0x8000,0,1);/* return +-minsubnormal */
u = math_opt_barrier (x);
u = u * u;
math_force_eval (u); /* raise underflow flag */
return x;
}
if(esx>=0) { /* x > 0 */
if(esx>esy||((esx==esy) && (hx>hy||((hx==hy)&&(lx>ly))))) {
/* x > y, x -= ulp */
if(lx==0) {
if (hx <= 0x80000000) {
if (esx == 0) {
--hx;
} else {
esx -= 1;
hx = hx - 1;
if (esx > 0)
hx |= 0x80000000;
}
} else
hx -= 1;
}
lx -= 1;
} else { /* x < y, x += ulp */
lx += 1;
if(lx==0) {
hx += 1;
if (hx==0 || (esx == 0 && hx == 0x80000000)) {
esx += 1;
hx |= 0x80000000;
}
}
}
} else { /* x < 0 */
if(esy>=0||(esx>esy||((esx==esy)&&(hx>hy||((hx==hy)&&(lx>ly)))))){
/* x < y, x -= ulp */
if(lx==0) {
if (hx <= 0x80000000 && esx != 0xffff8000) {
esx -= 1;
hx = hx - 1;
if ((esx&0x7fff) > 0)
hx |= 0x80000000;
} else
hx -= 1;
}
lx -= 1;
} else { /* x > y, x += ulp */
lx += 1;
if(lx==0) {
hx += 1;
if (hx==0 || (esx == 0xffff8000 && hx == 0x80000000)) {
esx += 1;
hx |= 0x80000000;
}
}
}
}
esy = esx&0x7fff;
if(esy==0x7fff) {
long double u = x + x; /* overflow */
math_force_eval (u);
__set_errno (ERANGE);
}
if(esy==0) {
long double u = x*x; /* underflow */
math_force_eval (u); /* raise underflow flag */
__set_errno (ERANGE);
}
SET_LDOUBLE_WORDS(x,esx,hx,lx);
return x;
}
weak_alias (__nextafterl, nextafterl)
strong_alias (__nextafterl, __nexttowardl)
weak_alias (__nextafterl, nexttowardl)