mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-23 03:10:05 +00:00
1d2fc9b3c5
2000-01-03 Kaz Kylheku <kaz@ashi.footprints.net> Redesigned how cancellation unblocks a thread from internal cancellation points (sem_wait, pthread_join, pthread_cond_{wait,timedwait}). Cancellation won't eat a signal in any of these functions (*required* by POSIX and Single Unix Spec!). * condvar.c: spontaneous wakeup on pthread_cond_timedwait won't eat a simultaneous condition variable signal (not required by POSIX or Single Unix Spec, but nice). * spinlock.c: __pthread_lock queues back any received restarts that don't belong to it instead of assuming ownership of lock upon any restart; fastlock can no longer be acquired by two threads simultaneously. * restart.h: restarts queue even on kernels that don't have queued real time signals (2.0, early 2.1), thanks to atomic counter, avoiding a rare race condition in pthread_cond_timedwait.
172 lines
5.9 KiB
C
172 lines
5.9 KiB
C
/* Linuxthreads - a simple clone()-based implementation of Posix */
|
|
/* threads for Linux. */
|
|
/* Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr) */
|
|
/* */
|
|
/* This program is free software; you can redistribute it and/or */
|
|
/* modify it under the terms of the GNU Library General Public License */
|
|
/* as published by the Free Software Foundation; either version 2 */
|
|
/* of the License, or (at your option) any later version. */
|
|
/* */
|
|
/* This program is distributed in the hope that it will be useful, */
|
|
/* but WITHOUT ANY WARRANTY; without even the implied warranty of */
|
|
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the */
|
|
/* GNU Library General Public License for more details. */
|
|
|
|
/* Thread cancellation */
|
|
|
|
#include <errno.h>
|
|
#include "pthread.h"
|
|
#include "internals.h"
|
|
#include "spinlock.h"
|
|
#include "restart.h"
|
|
|
|
int pthread_setcancelstate(int state, int * oldstate)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
if (state < PTHREAD_CANCEL_ENABLE || state > PTHREAD_CANCEL_DISABLE)
|
|
return EINVAL;
|
|
if (oldstate != NULL) *oldstate = THREAD_GETMEM(self, p_cancelstate);
|
|
THREAD_SETMEM(self, p_cancelstate, state);
|
|
if (THREAD_GETMEM(self, p_canceled) &&
|
|
THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE &&
|
|
THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
|
|
pthread_exit(PTHREAD_CANCELED);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_setcanceltype(int type, int * oldtype)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
if (type < PTHREAD_CANCEL_DEFERRED || type > PTHREAD_CANCEL_ASYNCHRONOUS)
|
|
return EINVAL;
|
|
if (oldtype != NULL) *oldtype = THREAD_GETMEM(self, p_canceltype);
|
|
THREAD_SETMEM(self, p_canceltype, type);
|
|
if (THREAD_GETMEM(self, p_canceled) &&
|
|
THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE &&
|
|
THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
|
|
pthread_exit(PTHREAD_CANCELED);
|
|
return 0;
|
|
}
|
|
|
|
int pthread_cancel(pthread_t thread)
|
|
{
|
|
pthread_handle handle = thread_handle(thread);
|
|
int pid;
|
|
int dorestart = 0;
|
|
pthread_descr th;
|
|
pthread_extricate_if *pextricate;
|
|
|
|
__pthread_lock(&handle->h_lock, NULL);
|
|
if (invalid_handle(handle, thread)) {
|
|
__pthread_unlock(&handle->h_lock);
|
|
return ESRCH;
|
|
}
|
|
|
|
th = handle->h_descr;
|
|
|
|
if (th->p_canceled) {
|
|
__pthread_unlock(&handle->h_lock);
|
|
return 0;
|
|
}
|
|
|
|
pextricate = th->p_extricate;
|
|
th->p_canceled = 1;
|
|
pid = th->p_pid;
|
|
|
|
/* If the thread has registered an extrication interface, then
|
|
invoke the interface. If it returns 1, then we succeeded in
|
|
dequeuing the thread from whatever waiting object it was enqueued
|
|
with. In that case, it is our responsibility to wake it up.
|
|
And also to set the p_woken_by_cancel flag so the woken thread
|
|
can tell that it was woken by cancellation. */
|
|
|
|
if (pextricate != NULL) {
|
|
dorestart = pextricate->pu_extricate_func(pextricate->pu_object, th);
|
|
th->p_woken_by_cancel = dorestart;
|
|
}
|
|
|
|
__pthread_unlock(&handle->h_lock);
|
|
|
|
/* If the thread has suspended or is about to, then we unblock it by
|
|
issuing a restart, instead of a cancel signal. Otherwise we send
|
|
the cancel signal to unblock the thread from a cancellation point,
|
|
or to initiate asynchronous cancellation. The restart is needed so
|
|
we have proper accounting of restarts; suspend decrements the thread's
|
|
resume count, and restart() increments it. This also means that suspend's
|
|
handling of the cancel signal is obsolete. */
|
|
|
|
if (dorestart)
|
|
restart(th);
|
|
else
|
|
kill(pid, __pthread_sig_cancel);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void pthread_testcancel(void)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
if (THREAD_GETMEM(self, p_canceled)
|
|
&& THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE)
|
|
pthread_exit(PTHREAD_CANCELED);
|
|
}
|
|
|
|
void _pthread_cleanup_push(struct _pthread_cleanup_buffer * buffer,
|
|
void (*routine)(void *), void * arg)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
buffer->__routine = routine;
|
|
buffer->__arg = arg;
|
|
buffer->__prev = THREAD_GETMEM(self, p_cleanup);
|
|
THREAD_SETMEM(self, p_cleanup, buffer);
|
|
}
|
|
|
|
void _pthread_cleanup_pop(struct _pthread_cleanup_buffer * buffer,
|
|
int execute)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
if (execute) buffer->__routine(buffer->__arg);
|
|
THREAD_SETMEM(self, p_cleanup, buffer->__prev);
|
|
}
|
|
|
|
void _pthread_cleanup_push_defer(struct _pthread_cleanup_buffer * buffer,
|
|
void (*routine)(void *), void * arg)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
buffer->__routine = routine;
|
|
buffer->__arg = arg;
|
|
buffer->__canceltype = THREAD_GETMEM(self, p_canceltype);
|
|
buffer->__prev = THREAD_GETMEM(self, p_cleanup);
|
|
THREAD_SETMEM(self, p_canceltype, PTHREAD_CANCEL_DEFERRED);
|
|
THREAD_SETMEM(self, p_cleanup, buffer);
|
|
}
|
|
|
|
void _pthread_cleanup_pop_restore(struct _pthread_cleanup_buffer * buffer,
|
|
int execute)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
if (execute) buffer->__routine(buffer->__arg);
|
|
THREAD_SETMEM(self, p_cleanup, buffer->__prev);
|
|
THREAD_SETMEM(self, p_canceltype, buffer->__canceltype);
|
|
if (THREAD_GETMEM(self, p_canceled) &&
|
|
THREAD_GETMEM(self, p_cancelstate) == PTHREAD_CANCEL_ENABLE &&
|
|
THREAD_GETMEM(self, p_canceltype) == PTHREAD_CANCEL_ASYNCHRONOUS)
|
|
pthread_exit(PTHREAD_CANCELED);
|
|
}
|
|
|
|
void __pthread_perform_cleanup(void)
|
|
{
|
|
pthread_descr self = thread_self();
|
|
struct _pthread_cleanup_buffer * c;
|
|
for (c = THREAD_GETMEM(self, p_cleanup); c != NULL; c = c->__prev)
|
|
c->__routine(c->__arg);
|
|
}
|
|
|
|
#ifndef PIC
|
|
/* We need a hook to force the cancelation wrappers to be linked in when
|
|
static libpthread is used. */
|
|
extern const int __pthread_provide_wrappers;
|
|
static const int * const __pthread_require_wrappers =
|
|
&__pthread_provide_wrappers;
|
|
#endif
|