glibc/math/s_clogf.c
2014-02-10 15:07:12 +01:00

124 lines
3.5 KiB
C

/* Compute complex natural logarithm.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <complex.h>
#include <math.h>
#include <math_private.h>
#include <float.h>
__complex__ float
__clogf (__complex__ float x)
{
__complex__ float result;
int rcls = fpclassify (__real__ x);
int icls = fpclassify (__imag__ x);
if (__glibc_unlikely (rcls == FP_ZERO && icls == FP_ZERO))
{
/* Real and imaginary part are 0.0. */
__imag__ result = signbit (__real__ x) ? M_PI : 0.0;
__imag__ result = __copysignf (__imag__ result, __imag__ x);
/* Yes, the following line raises an exception. */
__real__ result = -1.0 / fabsf (__real__ x);
}
else if (__glibc_likely (rcls != FP_NAN && icls != FP_NAN))
{
/* Neither real nor imaginary part is NaN. */
float absx = fabsf (__real__ x), absy = fabsf (__imag__ x);
int scale = 0;
if (absx < absy)
{
float t = absx;
absx = absy;
absy = t;
}
if (absx > FLT_MAX / 2.0f)
{
scale = -1;
absx = __scalbnf (absx, scale);
absy = (absy >= FLT_MIN * 2.0f ? __scalbnf (absy, scale) : 0.0f);
}
else if (absx < FLT_MIN && absy < FLT_MIN)
{
scale = FLT_MANT_DIG;
absx = __scalbnf (absx, scale);
absy = __scalbnf (absy, scale);
}
if (absx == 1.0f && scale == 0)
{
float absy2 = absy * absy;
if (absy2 <= FLT_MIN * 2.0f)
{
#if __FLT_EVAL_METHOD__ == 0
__real__ result = absy2 / 2.0f - absy2 * absy2 / 4.0f;
#else
volatile float force_underflow = absy2 * absy2 / 4.0f;
__real__ result = absy2 / 2.0f - force_underflow;
#endif
}
else
__real__ result = __log1pf (absy2) / 2.0f;
}
else if (absx > 1.0f && absx < 2.0f && absy < 1.0f && scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
if (absy >= FLT_EPSILON)
d2m1 += absy * absy;
__real__ result = __log1pf (d2m1) / 2.0f;
}
else if (absx < 1.0f
&& absx >= 0.75f
&& absy < FLT_EPSILON / 2.0f
&& scale == 0)
{
float d2m1 = (absx - 1.0f) * (absx + 1.0f);
__real__ result = __log1pf (d2m1) / 2.0f;
}
else if (absx < 1.0f && (absx >= 0.75f || absy >= 0.5f) && scale == 0)
{
float d2m1 = __x2y2m1f (absx, absy);
__real__ result = __log1pf (d2m1) / 2.0f;
}
else
{
float d = __ieee754_hypotf (absx, absy);
__real__ result = __ieee754_logf (d) - scale * (float) M_LN2;
}
__imag__ result = __ieee754_atan2f (__imag__ x, __real__ x);
}
else
{
__imag__ result = __nanf ("");
if (rcls == FP_INFINITE || icls == FP_INFINITE)
/* Real or imaginary part is infinite. */
__real__ result = HUGE_VALF;
else
__real__ result = __nanf ("");
}
return result;
}
#ifndef __clogf
weak_alias (__clogf, clogf)
#endif