glibc/sysdeps/m68k/fpu/s_cexp.c
Andreas Schwab afbdca978d * sysdeps/m68k/fpu/bits/mathinline.h: Move all libm internal
definitions... 
* sysdeps/m68k/fpu/mathimpl.h: ... here.  New file. 
* sysdeps/m68k/fpu/e_acos.c: Include "mathimpl.h". 
* sysdeps/m68k/fpu/e_atan2.c: Likewise. 
* sysdeps/m68k/fpu/e_fmod.c: Likewise. 
* sysdeps/m68k/fpu/e_pow.c: Likewise. 
* sysdeps/m68k/fpu/e_scalb.c: Likewise. 
* sysdeps/m68k/fpu/s_ccos.c: Likewise. 
* sysdeps/m68k/fpu/s_ccosh.c: Likewise. 
* sysdeps/m68k/fpu/s_cexp.c: Likewise. 
* sysdeps/m68k/fpu/s_csin.c: Likewise. 
* sysdeps/m68k/fpu/s_csinh.c: Likewise. 
* sysdeps/m68k/fpu/s_ilogb.c: Likewise. 
* sysdeps/m68k/fpu/s_llrint.c: Likewise. 
* sysdeps/m68k/fpu/s_llrintf.c: Likewise. 
* sysdeps/m68k/fpu/s_llrintl.c: Likewise. 
* sysdeps/m68k/fpu/s_modf.c: Likewise.
1999-06-26 16:43:55 +00:00

118 lines
3.2 KiB
C

/* Complex exponential function. m68k fpu version
Copyright (C) 1997, 1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <complex.h>
#include <math.h>
#include "mathimpl.h"
#ifndef SUFF
#define SUFF
#endif
#ifndef float_type
#define float_type double
#endif
#define CONCATX(a,b) __CONCAT(a,b)
#define s(name) CONCATX(name,SUFF)
#define m81(func) __m81_u(s(func))
__complex__ float_type
s(__cexp) (__complex__ float_type x)
{
__complex__ float_type retval;
unsigned long ix_cond;
ix_cond = __m81_test (__imag__ x);
if ((ix_cond & (__M81_COND_NAN|__M81_COND_INF)) == 0)
{
/* Imaginary part is finite. */
float_type exp_val = m81(__ieee754_exp) (__real__ x);
__real__ retval = __imag__ retval = exp_val;
if (m81(__finite) (exp_val))
{
float_type sin_ix, cos_ix;
__asm ("fsincos%.x %2,%1:%0" : "=f" (sin_ix), "=f" (cos_ix)
: "f" (__imag__ x));
__real__ retval *= cos_ix;
if (ix_cond & __M81_COND_ZERO)
__imag__ retval = __imag__ x;
else
__imag__ retval *= sin_ix;
}
else
{
/* Compute the sign of the result. */
float_type remainder, pi_2;
int quadrant;
__asm ("fmovecr %#0,%0\n\tfscale%.w %#-1,%0" : "=f" (pi_2));
__asm ("fmod%.x %2,%0\n\tfmove%.l %/fpsr,%1"
: "=f" (remainder), "=dm" (quadrant)
: "f" (pi_2), "0" (__imag__ x));
quadrant = (quadrant >> 16) & 0x83;
if (quadrant & 0x80)
quadrant ^= 0x83;
switch (quadrant)
{
default:
break;
case 1:
__real__ retval = -__real__ retval;
break;
case 2:
__real__ retval = -__real__ retval;
case 3:
__imag__ retval = -__imag__ retval;
break;
}
if (ix_cond & __M81_COND_ZERO && !m81(__isnan) (exp_val))
__imag__ retval = __imag__ x;
}
}
else
{
unsigned long rx_cond = __m81_test (__real__ x);
if (rx_cond & __M81_COND_INF)
{
/* Real part is infinite. */
if (rx_cond & __M81_COND_NEG)
{
__real__ retval = __imag__ retval = 0.0;
if (ix_cond & __M81_COND_NEG)
__imag__ retval = -__imag__ retval;
}
else
{
__real__ retval = __real__ x;
__imag__ retval = __imag__ x - __imag__ x;
}
}
else
__real__ retval = __imag__ retval = __imag__ x - __imag__ x;
}
return retval;
}
#define weak_aliasx(a,b) weak_alias(a,b)
weak_aliasx (s(__cexp), s(cexp))