glibc/sysdeps/ieee754/ldbl-128/k_sincosl.c
Paul E. Murphy 02bbfb414f ldbl-128: Use L(x) macro for long double constants
This runs the attached sed script against these files using
a regex which aggressively matches long double literals
when not obviously part of a comment.

Likewise, 5 digit or less integral constants are replaced
with integer constants, excepting the two cases of 0 used
in large tables, which are also the only integral values
of the form x.0*E0L encountered within these converted
files.

Likewise, -L(x) is transformed into L(-x).

Naturally, the script has a few minor hiccups which are
more clearly remedied via the attached fixup patch.  Such
hiccups include, context-sensitive promotion to a real
type, and munging constants inside harder to detect
comment blocks.
2016-09-13 15:33:59 -05:00

171 lines
6.6 KiB
C

/* Quad-precision floating point sine and cosine on <-pi/4,pi/4>.
Copyright (C) 1999-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#include <float.h>
#include <math.h>
#include <math_private.h>
static const _Float128 c[] = {
#define ONE c[0]
L(1.00000000000000000000000000000000000E+00), /* 3fff0000000000000000000000000000 */
/* cos x ~ ONE + x^2 ( SCOS1 + SCOS2 * x^2 + ... + SCOS4 * x^6 + SCOS5 * x^8 )
x in <0,1/256> */
#define SCOS1 c[1]
#define SCOS2 c[2]
#define SCOS3 c[3]
#define SCOS4 c[4]
#define SCOS5 c[5]
L(-5.00000000000000000000000000000000000E-01), /* bffe0000000000000000000000000000 */
L(4.16666666666666666666666666556146073E-02), /* 3ffa5555555555555555555555395023 */
L(-1.38888888888888888888309442601939728E-03), /* bff56c16c16c16c16c16a566e42c0375 */
L(2.48015873015862382987049502531095061E-05), /* 3fefa01a01a019ee02dcf7da2d6d5444 */
L(-2.75573112601362126593516899592158083E-07), /* bfe927e4f5dce637cb0b54908754bde0 */
/* cos x ~ ONE + x^2 ( COS1 + COS2 * x^2 + ... + COS7 * x^12 + COS8 * x^14 )
x in <0,0.1484375> */
#define COS1 c[6]
#define COS2 c[7]
#define COS3 c[8]
#define COS4 c[9]
#define COS5 c[10]
#define COS6 c[11]
#define COS7 c[12]
#define COS8 c[13]
L(-4.99999999999999999999999999999999759E-01), /* bffdfffffffffffffffffffffffffffb */
L(4.16666666666666666666666666651287795E-02), /* 3ffa5555555555555555555555516f30 */
L(-1.38888888888888888888888742314300284E-03), /* bff56c16c16c16c16c16c16a463dfd0d */
L(2.48015873015873015867694002851118210E-05), /* 3fefa01a01a01a01a0195cebe6f3d3a5 */
L(-2.75573192239858811636614709689300351E-07), /* bfe927e4fb7789f5aa8142a22044b51f */
L(2.08767569877762248667431926878073669E-09), /* 3fe21eed8eff881d1e9262d7adff4373 */
L(-1.14707451049343817400420280514614892E-11), /* bfda9397496922a9601ed3d4ca48944b */
L(4.77810092804389587579843296923533297E-14), /* 3fd2ae5f8197cbcdcaf7c3fb4523414c */
/* sin x ~ ONE * x + x^3 ( SSIN1 + SSIN2 * x^2 + ... + SSIN4 * x^6 + SSIN5 * x^8 )
x in <0,1/256> */
#define SSIN1 c[14]
#define SSIN2 c[15]
#define SSIN3 c[16]
#define SSIN4 c[17]
#define SSIN5 c[18]
L(-1.66666666666666666666666666666666659E-01), /* bffc5555555555555555555555555555 */
L(8.33333333333333333333333333146298442E-03), /* 3ff81111111111111111111110fe195d */
L(-1.98412698412698412697726277416810661E-04), /* bff2a01a01a01a01a019e7121e080d88 */
L(2.75573192239848624174178393552189149E-06), /* 3fec71de3a556c640c6aaa51aa02ab41 */
L(-2.50521016467996193495359189395805639E-08), /* bfe5ae644ee90c47dc71839de75b2787 */
/* sin x ~ ONE * x + x^3 ( SIN1 + SIN2 * x^2 + ... + SIN7 * x^12 + SIN8 * x^14 )
x in <0,0.1484375> */
#define SIN1 c[19]
#define SIN2 c[20]
#define SIN3 c[21]
#define SIN4 c[22]
#define SIN5 c[23]
#define SIN6 c[24]
#define SIN7 c[25]
#define SIN8 c[26]
L(-1.66666666666666666666666666666666538e-01), /* bffc5555555555555555555555555550 */
L(8.33333333333333333333333333307532934e-03), /* 3ff811111111111111111111110e7340 */
L(-1.98412698412698412698412534478712057e-04), /* bff2a01a01a01a01a01a019e7a626296 */
L(2.75573192239858906520896496653095890e-06), /* 3fec71de3a556c7338fa38527474b8f5 */
L(-2.50521083854417116999224301266655662e-08), /* bfe5ae64567f544e16c7de65c2ea551f */
L(1.60590438367608957516841576404938118e-10), /* 3fde6124613a811480538a9a41957115 */
L(-7.64716343504264506714019494041582610e-13), /* bfd6ae7f3d5aef30c7bc660b060ef365 */
L(2.81068754939739570236322404393398135e-15), /* 3fce9510115aabf87aceb2022a9a9180 */
};
#define SINCOSL_COS_HI 0
#define SINCOSL_COS_LO 1
#define SINCOSL_SIN_HI 2
#define SINCOSL_SIN_LO 3
extern const _Float128 __sincosl_table[];
void
__kernel_sincosl(_Float128 x, _Float128 y, _Float128 *sinx, _Float128 *cosx, int iy)
{
_Float128 h, l, z, sin_l, cos_l_m1;
int64_t ix;
u_int32_t tix, hix, index;
GET_LDOUBLE_MSW64 (ix, x);
tix = ((u_int64_t)ix) >> 32;
tix &= ~0x80000000; /* tix = |x|'s high 32 bits */
if (tix < 0x3ffc3000) /* |x| < 0.1484375 */
{
/* Argument is small enough to approximate it by a Chebyshev
polynomial of degree 16(17). */
if (tix < 0x3fc60000) /* |x| < 2^-57 */
{
math_check_force_underflow (x);
if (!((int)x)) /* generate inexact */
{
*sinx = x;
*cosx = ONE;
return;
}
}
z = x * x;
*sinx = x + (x * (z*(SIN1+z*(SIN2+z*(SIN3+z*(SIN4+
z*(SIN5+z*(SIN6+z*(SIN7+z*SIN8)))))))));
*cosx = ONE + (z*(COS1+z*(COS2+z*(COS3+z*(COS4+
z*(COS5+z*(COS6+z*(COS7+z*COS8))))))));
}
else
{
/* So that we don't have to use too large polynomial, we find
l and h such that x = l + h, where fabsl(l) <= 1.0/256 with 83
possible values for h. We look up cosl(h) and sinl(h) in
pre-computed tables, compute cosl(l) and sinl(l) using a
Chebyshev polynomial of degree 10(11) and compute
sinl(h+l) = sinl(h)cosl(l) + cosl(h)sinl(l) and
cosl(h+l) = cosl(h)cosl(l) - sinl(h)sinl(l). */
index = 0x3ffe - (tix >> 16);
hix = (tix + (0x200 << index)) & (0xfffffc00 << index);
if (signbit (x))
{
x = -x;
y = -y;
}
switch (index)
{
case 0: index = ((45 << 10) + hix - 0x3ffe0000) >> 8; break;
case 1: index = ((13 << 11) + hix - 0x3ffd0000) >> 9; break;
default:
case 2: index = (hix - 0x3ffc3000) >> 10; break;
}
SET_LDOUBLE_WORDS64(h, ((u_int64_t)hix) << 32, 0);
if (iy)
l = y - (h - x);
else
l = x - h;
z = l * l;
sin_l = l*(ONE+z*(SSIN1+z*(SSIN2+z*(SSIN3+z*(SSIN4+z*SSIN5)))));
cos_l_m1 = z*(SCOS1+z*(SCOS2+z*(SCOS3+z*(SCOS4+z*SCOS5))));
z = __sincosl_table [index + SINCOSL_SIN_HI]
+ (__sincosl_table [index + SINCOSL_SIN_LO]
+ (__sincosl_table [index + SINCOSL_SIN_HI] * cos_l_m1)
+ (__sincosl_table [index + SINCOSL_COS_HI] * sin_l));
*sinx = (ix < 0) ? -z : z;
*cosx = __sincosl_table [index + SINCOSL_COS_HI]
+ (__sincosl_table [index + SINCOSL_COS_LO]
- (__sincosl_table [index + SINCOSL_SIN_HI] * sin_l
- __sincosl_table [index + SINCOSL_COS_HI] * cos_l_m1));
}
}