glibc/sysdeps/x86_64/multiarch/memcmpeq-evex.S
Noah Goldstein 9b7cfab180 x86_64: Add evex optimized __memcmpeq in memcmpeq-evex.S
No bug. This commit adds new optimized __memcmpeq implementation for
evex.

The primary optimizations are:

1) skipping the logic to find the difference of the first mismatched
byte.

2) not updating src/dst addresses as the non-equals logic does not
need to be reused by different areas.
2021-10-27 13:03:46 -05:00

324 lines
8.6 KiB
ArmAsm

/* __memcmpeq optimized with EVEX.
Copyright (C) 2017-2021 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#if IS_IN (libc)
/* __memcmpeq is implemented as:
1. Use ymm vector compares when possible. The only case where
vector compares is not possible for when size < VEC_SIZE
and loading from either s1 or s2 would cause a page cross.
2. Use xmm vector compare when size >= 8 bytes.
3. Optimistically compare up to first 4 * VEC_SIZE one at a
to check for early mismatches. Only do this if its guranteed the
work is not wasted.
4. If size is 8 * VEC_SIZE or less, unroll the loop.
5. Compare 4 * VEC_SIZE at a time with the aligned first memory
area.
6. Use 2 vector compares when size is 2 * VEC_SIZE or less.
7. Use 4 vector compares when size is 4 * VEC_SIZE or less.
8. Use 8 vector compares when size is 8 * VEC_SIZE or less. */
# include <sysdep.h>
# ifndef MEMCMPEQ
# define MEMCMPEQ __memcmpeq_evex
# endif
# define VMOVU vmovdqu64
# define VPCMP vpcmpub
# define VPTEST vptestmb
# define VEC_SIZE 32
# define PAGE_SIZE 4096
# define YMM0 ymm16
# define YMM1 ymm17
# define YMM2 ymm18
# define YMM3 ymm19
# define YMM4 ymm20
# define YMM5 ymm21
# define YMM6 ymm22
.section .text.evex, "ax", @progbits
ENTRY_P2ALIGN (MEMCMPEQ, 6)
# ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %edx, %edx
# endif
cmp $VEC_SIZE, %RDX_LP
jb L(less_vec)
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
VMOVU (%rsi), %YMM1
/* Use compare not equals to directly check for mismatch. */
VPCMP $4, (%rdi), %YMM1, %k1
kmovd %k1, %eax
testl %eax, %eax
jnz L(return_neq0)
cmpq $(VEC_SIZE * 2), %rdx
jbe L(last_1x_vec)
/* Check second VEC no matter what. */
VMOVU VEC_SIZE(%rsi), %YMM2
VPCMP $4, VEC_SIZE(%rdi), %YMM2, %k1
kmovd %k1, %eax
testl %eax, %eax
jnz L(return_neq0)
/* Less than 4 * VEC. */
cmpq $(VEC_SIZE * 4), %rdx
jbe L(last_2x_vec)
/* Check third and fourth VEC no matter what. */
VMOVU (VEC_SIZE * 2)(%rsi), %YMM3
VPCMP $4, (VEC_SIZE * 2)(%rdi), %YMM3, %k1
kmovd %k1, %eax
testl %eax, %eax
jnz L(return_neq0)
VMOVU (VEC_SIZE * 3)(%rsi), %YMM4
VPCMP $4, (VEC_SIZE * 3)(%rdi), %YMM4, %k1
kmovd %k1, %eax
testl %eax, %eax
jnz L(return_neq0)
/* Go to 4x VEC loop. */
cmpq $(VEC_SIZE * 8), %rdx
ja L(more_8x_vec)
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
branches. */
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx), %YMM1
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx), %YMM2
addq %rdx, %rdi
/* Wait to load from s1 until addressed adjust due to
unlamination. */
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
will have some 1s. */
vpxorq -(VEC_SIZE * 4)(%rdi), %YMM1, %YMM1
/* Ternary logic to xor -(VEC_SIZE * 3)(%rdi) with YMM2 while
oring with YMM1. Result is stored in YMM1. */
vpternlogd $0xde, -(VEC_SIZE * 3)(%rdi), %YMM1, %YMM2
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %YMM3
vpxorq -(VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
/* Or together YMM1, YMM2, and YMM3 into YMM3. */
VMOVU -(VEC_SIZE)(%rsi, %rdx), %YMM4
vpxorq -(VEC_SIZE)(%rdi), %YMM4, %YMM4
/* Or together YMM2, YMM3, and YMM4 into YMM4. */
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
/* Compare YMM4 with 0. If any 1s s1 and s2 don't match. */
VPTEST %YMM4, %YMM4, %k1
kmovd %k1, %eax
L(return_neq0):
ret
/* Fits in padding needed to .p2align 5 L(less_vec). */
L(last_1x_vec):
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %YMM1
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %k1
kmovd %k1, %eax
ret
/* NB: p2align 5 here will ensure the L(loop_4x_vec) is also 32
byte aligned. */
.p2align 5
L(less_vec):
/* Check if one or less char. This is necessary for size = 0 but
is also faster for size = 1. */
cmpl $1, %edx
jbe L(one_or_less)
/* Check if loading one VEC from either s1 or s2 could cause a
page cross. This can have false positives but is by far the
fastest method. */
movl %edi, %eax
orl %esi, %eax
andl $(PAGE_SIZE - 1), %eax
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
jg L(page_cross_less_vec)
/* No page cross possible. */
VMOVU (%rsi), %YMM2
VPCMP $4, (%rdi), %YMM2, %k1
kmovd %k1, %eax
/* Result will be zero if s1 and s2 match. Otherwise first set
bit will be first mismatch. */
bzhil %edx, %eax, %eax
ret
/* Relatively cold but placing close to L(less_vec) for 2 byte
jump encoding. */
.p2align 4
L(one_or_less):
jb L(zero)
movzbl (%rsi), %ecx
movzbl (%rdi), %eax
subl %ecx, %eax
/* No ymm register was touched. */
ret
/* Within the same 16 byte block is L(one_or_less). */
L(zero):
xorl %eax, %eax
ret
.p2align 4
L(last_2x_vec):
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx), %YMM1
vpxorq -(VEC_SIZE * 2)(%rdi, %rdx), %YMM1, %YMM1
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx), %YMM2
vpternlogd $0xde, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %YMM2
VPTEST %YMM2, %YMM2, %k1
kmovd %k1, %eax
ret
.p2align 4
L(more_8x_vec):
/* Set end of s1 in rdx. */
leaq -(VEC_SIZE * 4)(%rdi, %rdx), %rdx
/* rsi stores s2 - s1. This allows loop to only update one
pointer. */
subq %rdi, %rsi
/* Align s1 pointer. */
andq $-VEC_SIZE, %rdi
/* Adjust because first 4x vec where check already. */
subq $-(VEC_SIZE * 4), %rdi
.p2align 4
L(loop_4x_vec):
VMOVU (%rsi, %rdi), %YMM1
vpxorq (%rdi), %YMM1, %YMM1
VMOVU VEC_SIZE(%rsi, %rdi), %YMM2
vpternlogd $0xde, (VEC_SIZE)(%rdi), %YMM1, %YMM2
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %YMM3
vpxorq (VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %YMM4
vpxorq (VEC_SIZE * 3)(%rdi), %YMM4, %YMM4
vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
VPTEST %YMM4, %YMM4, %k1
kmovd %k1, %eax
testl %eax, %eax
jnz L(return_neq2)
subq $-(VEC_SIZE * 4), %rdi
cmpq %rdx, %rdi
jb L(loop_4x_vec)
subq %rdx, %rdi
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %YMM4
vpxorq (VEC_SIZE * 3)(%rdx), %YMM4, %YMM4
/* rdi has 4 * VEC_SIZE - remaining length. */
cmpl $(VEC_SIZE * 3), %edi
jae L(8x_last_1x_vec)
/* Load regardless of branch. */
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %YMM3
/* Ternary logic to xor (VEC_SIZE * 2)(%rdx) with YMM3 while
oring with YMM4. Result is stored in YMM4. */
vpternlogd $0xf6, (VEC_SIZE * 2)(%rdx), %YMM3, %YMM4
cmpl $(VEC_SIZE * 2), %edi
jae L(8x_last_2x_vec)
VMOVU VEC_SIZE(%rsi, %rdx), %YMM2
vpxorq VEC_SIZE(%rdx), %YMM2, %YMM2
VMOVU (%rsi, %rdx), %YMM1
vpxorq (%rdx), %YMM1, %YMM1
vpternlogd $0xfe, %YMM1, %YMM2, %YMM4
L(8x_last_1x_vec):
L(8x_last_2x_vec):
VPTEST %YMM4, %YMM4, %k1
kmovd %k1, %eax
L(return_neq2):
ret
/* Relatively cold case as page cross are unexpected. */
.p2align 4
L(page_cross_less_vec):
cmpl $16, %edx
jae L(between_16_31)
cmpl $8, %edx
ja L(between_9_15)
cmpl $4, %edx
jb L(between_2_3)
/* From 4 to 8 bytes. No branch when size == 4. */
movl (%rdi), %eax
subl (%rsi), %eax
movl -4(%rdi, %rdx), %ecx
movl -4(%rsi, %rdx), %edi
subl %edi, %ecx
orl %ecx, %eax
ret
.p2align 4,, 8
L(between_16_31):
/* From 16 to 31 bytes. No branch when size == 16. */
/* Safe to use xmm[0, 15] as no vzeroupper is needed so RTM safe.
*/
vmovdqu (%rsi), %xmm1
vpcmpeqb (%rdi), %xmm1, %xmm1
vmovdqu -16(%rsi, %rdx), %xmm2
vpcmpeqb -16(%rdi, %rdx), %xmm2, %xmm2
vpand %xmm1, %xmm2, %xmm2
vpmovmskb %xmm2, %eax
notw %ax
/* No ymm register was touched. */
ret
.p2align 4,, 8
L(between_9_15):
/* From 9 to 15 bytes. */
movq (%rdi), %rax
subq (%rsi), %rax
movq -8(%rdi, %rdx), %rcx
movq -8(%rsi, %rdx), %rdi
subq %rdi, %rcx
orq %rcx, %rax
/* edx is guranteed to be a non-zero int. */
cmovnz %edx, %eax
ret
/* Don't align. This is cold and aligning here will cause code
to spill into next cache line. */
L(between_2_3):
/* From 2 to 3 bytes. No branch when size == 2. */
movzwl (%rdi), %eax
movzwl (%rsi), %ecx
subl %ecx, %eax
movzbl -1(%rdi, %rdx), %ecx
/* All machines that support evex will insert a "merging uop"
avoiding any serious partial register stalls. */
subb -1(%rsi, %rdx), %cl
orl %ecx, %eax
/* No ymm register was touched. */
ret
/* 4 Bytes from next cache line. */
END (MEMCMPEQ)
#endif