mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-03 18:31:04 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
1578 lines
42 KiB
ArmAsm
1578 lines
42 KiB
ArmAsm
.file "libm_reduce.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2003, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History:
|
|
// 02/02/00 Initial Version
|
|
// 05/13/02 Rescheduled for speed, changed interface to pass
|
|
// parameters in fp registers
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align;
|
|
// used data8 for long double data storage
|
|
//
|
|
//*********************************************************************
|
|
//*********************************************************************
|
|
//
|
|
// Function: __libm_pi_by_two_reduce(x) return r, c, and N where
|
|
// x = N * pi/4 + (r+c) , where |r+c| <= pi/4.
|
|
// This function is not designed to be used by the
|
|
// general user.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Accuracy: Returns double-precision values
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// Resources Used:
|
|
//
|
|
// Floating-Point Registers:
|
|
// f8 = Input x, return value r
|
|
// f9 = return value c
|
|
// f32-f70
|
|
//
|
|
// General Purpose Registers:
|
|
// r8 = return value N
|
|
// r34-r64
|
|
//
|
|
// Predicate Registers: p6-p14
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// IEEE Special Conditions:
|
|
//
|
|
// No conditions should be raised.
|
|
//
|
|
//*********************************************************************
|
|
//
|
|
// I. Introduction
|
|
// ===============
|
|
//
|
|
// For the forward trigonometric functions sin, cos, sincos, and
|
|
// tan, the original algorithms for IA 64 handle arguments up to
|
|
// 1 ulp less than 2^63 in magnitude. For double-extended arguments x,
|
|
// |x| >= 2^63, this routine returns N and r_hi, r_lo where
|
|
//
|
|
// x is accurately approximated by
|
|
// 2*K*pi + N * pi/2 + r_hi + r_lo, |r_hi+r_lo| <= pi/4.
|
|
// CASE = 1 or 2.
|
|
// CASE is 1 unless |r_hi + r_lo| < 2^(-33).
|
|
//
|
|
// The exact value of K is not determined, but that information is
|
|
// not required in trigonometric function computations.
|
|
//
|
|
// We first assume the argument x in question satisfies x >= 2^(63).
|
|
// In particular, it is positive. Negative x can be handled by symmetry:
|
|
//
|
|
// -x is accurately approximated by
|
|
// -2*K*pi + (-N) * pi/2 - (r_hi + r_lo), |r_hi+r_lo| <= pi/4.
|
|
//
|
|
// The idea of the reduction is that
|
|
//
|
|
// x * 2/pi = N_big + N + f, |f| <= 1/2
|
|
//
|
|
// Moreover, for double extended x, |f| >= 2^(-75). (This is an
|
|
// non-obvious fact found by enumeration using a special algorithm
|
|
// involving continued fraction.) The algorithm described below
|
|
// calculates N and an accurate approximation of f.
|
|
//
|
|
// Roughly speaking, an appropriate 256-bit (4 X 64) portion of
|
|
// 2/pi is multiplied with x to give the desired information.
|
|
//
|
|
// II. Representation of 2/PI
|
|
// ==========================
|
|
//
|
|
// The value of 2/pi in binary fixed-point is
|
|
//
|
|
// .101000101111100110......
|
|
//
|
|
// We store 2/pi in a table, starting at the position corresponding
|
|
// to bit position 63
|
|
//
|
|
// bit position 63 62 ... 0 -1 -2 -3 -4 -5 -6 -7 .... -16576
|
|
//
|
|
// 0 0 ... 0 . 1 0 1 0 1 0 1 .... X
|
|
//
|
|
// ^
|
|
// |__ implied binary pt
|
|
//
|
|
// III. Algorithm
|
|
// ==============
|
|
//
|
|
// This describes the algorithm in the most natural way using
|
|
// unsigned interger multiplication. The implementation section
|
|
// describes how the integer arithmetic is simulated.
|
|
//
|
|
// STEP 0. Initialization
|
|
// ----------------------
|
|
//
|
|
// Let the input argument x be
|
|
//
|
|
// x = 2^m * ( 1. b_1 b_2 b_3 ... b_63 ), 63 <= m <= 16383.
|
|
//
|
|
// The first crucial step is to fetch four 64-bit portions of 2/pi.
|
|
// To fulfill this goal, we calculate the bit position L of the
|
|
// beginning of these 256-bit quantity by
|
|
//
|
|
// L := 62 - m.
|
|
//
|
|
// Note that -16321 <= L <= -1 because 63 <= m <= 16383; and that
|
|
// the storage of 2/pi is adequate.
|
|
//
|
|
// Fetch P_1, P_2, P_3, P_4 beginning at bit position L thus:
|
|
//
|
|
// bit position L L-1 L-2 ... L-63
|
|
//
|
|
// P_1 = b b b ... b
|
|
//
|
|
// each b can be 0 or 1. Also, let P_0 be the two bits correspoding to
|
|
// bit positions L+2 and L+1. So, when each of the P_j is interpreted
|
|
// with appropriate scaling, we have
|
|
//
|
|
// 2/pi = P_big + P_0 + (P_1 + P_2 + P_3 + P_4) + P_small
|
|
//
|
|
// Note that P_big and P_small can be ignored. The reasons are as follow.
|
|
// First, consider P_big. If P_big = 0, we can certainly ignore it.
|
|
// Otherwise, P_big >= 2^(L+3). Now,
|
|
//
|
|
// P_big * ulp(x) >= 2^(L+3) * 2^(m-63)
|
|
// >= 2^(65-m + m-63 )
|
|
// >= 2^2
|
|
//
|
|
// Thus, P_big * x is an integer of the form 4*K. So
|
|
//
|
|
// x = 4*K * (pi/2) + x*(P_0 + P_1 + P_2 + P_3 + P_4)*(pi/2)
|
|
// + x*P_small*(pi/2).
|
|
//
|
|
// Hence, P_big*x corresponds to information that can be ignored for
|
|
// trigonometic function evaluation.
|
|
//
|
|
// Next, we must estimate the effect of ignoring P_small. The absolute
|
|
// error made by ignoring P_small is bounded by
|
|
//
|
|
// |P_small * x| <= ulp(P_4) * x
|
|
// <= 2^(L-255) * 2^(m+1)
|
|
// <= 2^(62-m-255 + m + 1)
|
|
// <= 2^(-192)
|
|
//
|
|
// Since for double-extended precision, x * 2/pi = integer + f,
|
|
// 0.5 >= |f| >= 2^(-75), the relative error introduced by ignoring
|
|
// P_small is bounded by 2^(-192+75) <= 2^(-117), which is acceptable.
|
|
//
|
|
// Further note that if x is split into x_hi + x_lo where x_lo is the
|
|
// two bits corresponding to bit positions 2^(m-62) and 2^(m-63); then
|
|
//
|
|
// P_0 * x_hi
|
|
//
|
|
// is also an integer of the form 4*K; and thus can also be ignored.
|
|
// Let M := P_0 * x_lo which is a small integer. The main part of the
|
|
// calculation is really the multiplication of x with the four pieces
|
|
// P_1, P_2, P_3, and P_4.
|
|
//
|
|
// Unless the reduced argument is extremely small in magnitude, it
|
|
// suffices to carry out the multiplication of x with P_1, P_2, and
|
|
// P_3. x*P_4 will be carried out and added on as a correction only
|
|
// when it is found to be needed. Note also that x*P_4 need not be
|
|
// computed exactly. A straightforward multiplication suffices since
|
|
// the rounding error thus produced would be bounded by 2^(-3*64),
|
|
// that is 2^(-192) which is small enough as the reduced argument
|
|
// is bounded from below by 2^(-75).
|
|
//
|
|
// Now that we have four 64-bit data representing 2/pi and a
|
|
// 64-bit x. We first need to calculate a highly accurate product
|
|
// of x and P_1, P_2, P_3. This is best understood as integer
|
|
// multiplication.
|
|
//
|
|
//
|
|
// STEP 1. Multiplication
|
|
// ----------------------
|
|
//
|
|
//
|
|
// --------- --------- ---------
|
|
// | P_1 | | P_2 | | P_3 |
|
|
// --------- --------- ---------
|
|
//
|
|
// ---------
|
|
// X | X |
|
|
// ---------
|
|
// ----------------------------------------------------
|
|
//
|
|
// --------- ---------
|
|
// | A_hi | | A_lo |
|
|
// --------- ---------
|
|
//
|
|
//
|
|
// --------- ---------
|
|
// | B_hi | | B_lo |
|
|
// --------- ---------
|
|
//
|
|
//
|
|
// --------- ---------
|
|
// | C_hi | | C_lo |
|
|
// --------- ---------
|
|
//
|
|
// ====================================================
|
|
// --------- --------- --------- ---------
|
|
// | S_0 | | S_1 | | S_2 | | S_3 |
|
|
// --------- --------- --------- ---------
|
|
//
|
|
//
|
|
//
|
|
// STEP 2. Get N and f
|
|
// -------------------
|
|
//
|
|
// Conceptually, after the individual pieces S_0, S_1, ..., are obtained,
|
|
// we have to sum them and obtain an integer part, N, and a fraction, f.
|
|
// Here, |f| <= 1/2, and N is an integer. Note also that N need only to
|
|
// be known to module 2^k, k >= 2. In the case when |f| is small enough,
|
|
// we would need to add in the value x*P_4.
|
|
//
|
|
//
|
|
// STEP 3. Get reduced argument
|
|
// ----------------------------
|
|
//
|
|
// The value f is not yet the reduced argument that we seek. The
|
|
// equation
|
|
//
|
|
// x * 2/pi = 4K + N + f
|
|
//
|
|
// says that
|
|
//
|
|
// x = 2*K*pi + N * pi/2 + f * (pi/2).
|
|
//
|
|
// Thus, the reduced argument is given by
|
|
//
|
|
// reduced argument = f * pi/2.
|
|
//
|
|
// This multiplication must be performed to extra precision.
|
|
//
|
|
// IV. Implementation
|
|
// ==================
|
|
//
|
|
// Step 0. Initialization
|
|
// ----------------------
|
|
//
|
|
// Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
|
|
//
|
|
// In memory, 2/pi is stored contiguously as
|
|
//
|
|
// 0x00000000 0x00000000 0xA2F....
|
|
// ^
|
|
// |__ implied binary bit
|
|
//
|
|
// Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m. Thus
|
|
// -1 <= L <= -16321. We fetch from memory 5 integer pieces of data.
|
|
//
|
|
// P_0 is the two bits corresponding to bit positions L+2 and L+1
|
|
// P_1 is the 64-bit starting at bit position L
|
|
// P_2 is the 64-bit starting at bit position L-64
|
|
// P_3 is the 64-bit starting at bit position L-128
|
|
// P_4 is the 64-bit starting at bit position L-192
|
|
//
|
|
// For example, if m = 63, P_0 would be 0 and P_1 would look like
|
|
// 0xA2F...
|
|
//
|
|
// If m = 65, P_0 would be the two msb of 0xA, thus, P_0 is 10 in binary.
|
|
// P_1 in binary would be 1 0 0 0 1 0 1 1 1 1 ....
|
|
//
|
|
// Step 1. Multiplication
|
|
// ----------------------
|
|
//
|
|
// At this point, P_1, P_2, P_3, P_4 are integers. They are
|
|
// supposed to be interpreted as
|
|
//
|
|
// 2^(L-63) * P_1;
|
|
// 2^(L-63-64) * P_2;
|
|
// 2^(L-63-128) * P_3;
|
|
// 2^(L-63-192) * P_4;
|
|
//
|
|
// Since each of them need to be multiplied to x, we would scale
|
|
// both x and the P_j's by some convenient factors: scale each
|
|
// of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
|
|
//
|
|
// p_1 := fcvt.xf ( P_1 )
|
|
// p_2 := fcvt.xf ( P_2 ) * 2^(-64)
|
|
// p_3 := fcvt.xf ( P_3 ) * 2^(-128)
|
|
// p_4 := fcvt.xf ( P_4 ) * 2^(-192)
|
|
// x := replace exponent of x by -1
|
|
// because 2^m * 1.xxxx...xxx * 2^(L-63)
|
|
// is 2^(-1) * 1.xxxx...xxx
|
|
//
|
|
// We are now faced with the task of computing the following
|
|
//
|
|
// --------- --------- ---------
|
|
// | P_1 | | P_2 | | P_3 |
|
|
// --------- --------- ---------
|
|
//
|
|
// ---------
|
|
// X | X |
|
|
// ---------
|
|
// ----------------------------------------------------
|
|
//
|
|
// --------- ---------
|
|
// | A_hi | | A_lo |
|
|
// --------- ---------
|
|
//
|
|
// --------- ---------
|
|
// | B_hi | | B_lo |
|
|
// --------- ---------
|
|
//
|
|
// --------- ---------
|
|
// | C_hi | | C_lo |
|
|
// --------- ---------
|
|
//
|
|
// ====================================================
|
|
// ----------- --------- --------- ---------
|
|
// | S_0 | | S_1 | | S_2 | | S_3 |
|
|
// ----------- --------- --------- ---------
|
|
// ^ ^
|
|
// | |___ binary point
|
|
// |
|
|
// |___ possibly one more bit
|
|
//
|
|
// Let FPSR3 be set to round towards zero with widest precision
|
|
// and exponent range. Unless an explicit FPSR is given,
|
|
// round-to-nearest with widest precision and exponent range is
|
|
// used.
|
|
//
|
|
// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_C := 2^(-65).
|
|
//
|
|
// Tmp_C := fmpy.fpsr3( x, p_1 );
|
|
// If Tmp_C >= sigma_C then
|
|
// C_hi := Tmp_C;
|
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
|
// Else
|
|
// C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
|
|
// ...subtraction is exact, regardless
|
|
// ...of rounding direction
|
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
|
// End If
|
|
//
|
|
// Tmp_B := fmpy.fpsr3( x, p_2 );
|
|
// If Tmp_B >= sigma_B then
|
|
// B_hi := Tmp_B;
|
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
|
// Else
|
|
// B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
|
|
// ...subtraction is exact, regardless
|
|
// ...of rounding direction
|
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
|
// End If
|
|
//
|
|
// Tmp_A := fmpy.fpsr3( x, p_3 );
|
|
// If Tmp_A >= sigma_A then
|
|
// A_hi := Tmp_A;
|
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
|
// Else
|
|
// A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
|
|
// ...subtraction is exact, regardless
|
|
// ...of rounding direction
|
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
|
// End If
|
|
//
|
|
// ...Note that C_hi is of integer value. We need only the
|
|
// ...last few bits. Thus we can ensure C_hi is never a big
|
|
// ...integer, freeing us from overflow worry.
|
|
//
|
|
// Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
|
|
// ...Tmp_C is the upper portion of C_hi
|
|
// C_hi := C_hi - Tmp_C
|
|
// ...0 <= C_hi < 2^7
|
|
//
|
|
// Step 2. Get N and f
|
|
// -------------------
|
|
//
|
|
// At this point, we have all the components to obtain
|
|
// S_0, S_1, S_2, S_3 and thus N and f. We start by adding
|
|
// C_lo and B_hi. This sum together with C_hi gives a good
|
|
// estimation of N and f.
|
|
//
|
|
// A := fadd.fpsr3( B_hi, C_lo )
|
|
// B := max( B_hi, C_lo )
|
|
// b := min( B_hi, C_lo )
|
|
//
|
|
// a := (B - A) + b ...exact. Note that a is either 0
|
|
// ...or 2^(-64).
|
|
//
|
|
// N := round_to_nearest_integer_value( A );
|
|
// f := A - N; ...exact because lsb(A) >= 2^(-64)
|
|
// ...and |f| <= 1/2.
|
|
//
|
|
// f := f + a ...exact because a is 0 or 2^(-64);
|
|
// ...the msb of the sum is <= 1/2
|
|
// ...lsb >= 2^(-64).
|
|
//
|
|
// N := convert to integer format( C_hi + N );
|
|
// M := P_0 * x_lo;
|
|
// N := N + M;
|
|
//
|
|
// If sgn_x == 1 (that is original x was negative)
|
|
// N := 2^10 - N
|
|
// ...this maintains N to be non-negative, but still
|
|
// ...equivalent to the (negated N) mod 4.
|
|
// End If
|
|
//
|
|
// If |f| >= 2^(-33)
|
|
//
|
|
// ...Case 1
|
|
// CASE := 1
|
|
// g := A_hi + B_lo;
|
|
// s_hi := f + g;
|
|
// s_lo := (f - s_hi) + g;
|
|
//
|
|
// Else
|
|
//
|
|
// ...Case 2
|
|
// CASE := 2
|
|
// A := fadd.fpsr3( A_hi, B_lo )
|
|
// B := max( A_hi, B_lo )
|
|
// b := min( A_hi, B_lo )
|
|
//
|
|
// a := (B - A) + b ...exact. Note that a is either 0
|
|
// ...or 2^(-128).
|
|
//
|
|
// f_hi := A + f;
|
|
// f_lo := (f - f_hi) + A;
|
|
// ...this is exact.
|
|
// ...f-f_hi is exact because either |f| >= |A|, in which
|
|
// ...case f-f_hi is clearly exact; or otherwise, 0<|f|<|A|
|
|
// ...means msb(f) <= msb(A) = 2^(-64) => |f| = 2^(-64).
|
|
// ...If f = 2^(-64), f-f_hi involves cancellation and is
|
|
// ...exact. If f = -2^(-64), then A + f is exact. Hence
|
|
// ...f-f_hi is -A exactly, giving f_lo = 0.
|
|
//
|
|
// f_lo := f_lo + a;
|
|
//
|
|
// If |f| >= 2^(-50) then
|
|
// s_hi := f_hi;
|
|
// s_lo := f_lo;
|
|
// Else
|
|
// f_lo := (f_lo + A_lo) + x*p_4
|
|
// s_hi := f_hi + f_lo
|
|
// s_lo := (f_hi - s_hi) + f_lo
|
|
// End If
|
|
//
|
|
// End If
|
|
//
|
|
// Step 3. Get reduced argument
|
|
// ----------------------------
|
|
//
|
|
// If sgn_x == 0 (that is original x is positive)
|
|
//
|
|
// D_hi := Pi_by_2_hi
|
|
// D_lo := Pi_by_2_lo
|
|
// ...load from table
|
|
//
|
|
// Else
|
|
//
|
|
// D_hi := neg_Pi_by_2_hi
|
|
// D_lo := neg_Pi_by_2_lo
|
|
// ...load from table
|
|
// End If
|
|
//
|
|
// r_hi := s_hi*D_hi
|
|
// r_lo := s_hi*D_hi - r_hi ...fma
|
|
// r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
|
|
//
|
|
// Return N, r_hi, r_lo
|
|
//
|
|
FR_input_X = f8
|
|
FR_r_hi = f8
|
|
FR_r_lo = f9
|
|
|
|
FR_X = f32
|
|
FR_N = f33
|
|
FR_p_1 = f34
|
|
FR_TWOM33 = f35
|
|
FR_TWOM50 = f36
|
|
FR_g = f37
|
|
FR_p_2 = f38
|
|
FR_f = f39
|
|
FR_s_lo = f40
|
|
FR_p_3 = f41
|
|
FR_f_abs = f42
|
|
FR_D_lo = f43
|
|
FR_p_4 = f44
|
|
FR_D_hi = f45
|
|
FR_Tmp2_C = f46
|
|
FR_s_hi = f47
|
|
FR_sigma_A = f48
|
|
FR_A = f49
|
|
FR_sigma_B = f50
|
|
FR_B = f51
|
|
FR_sigma_C = f52
|
|
FR_b = f53
|
|
FR_ScaleP2 = f54
|
|
FR_ScaleP3 = f55
|
|
FR_ScaleP4 = f56
|
|
FR_Tmp_A = f57
|
|
FR_Tmp_B = f58
|
|
FR_Tmp_C = f59
|
|
FR_A_hi = f60
|
|
FR_f_hi = f61
|
|
FR_RSHF = f62
|
|
FR_A_lo = f63
|
|
FR_B_hi = f64
|
|
FR_a = f65
|
|
FR_B_lo = f66
|
|
FR_f_lo = f67
|
|
FR_N_fix = f68
|
|
FR_C_hi = f69
|
|
FR_C_lo = f70
|
|
|
|
GR_N = r8
|
|
GR_Exp_x = r36
|
|
GR_Temp = r37
|
|
GR_BIASL63 = r38
|
|
GR_CASE = r39
|
|
GR_x_lo = r40
|
|
GR_sgn_x = r41
|
|
GR_M = r42
|
|
GR_BASE = r43
|
|
GR_LENGTH1 = r44
|
|
GR_LENGTH2 = r45
|
|
GR_ASUB = r46
|
|
GR_P_0 = r47
|
|
GR_P_1 = r48
|
|
GR_P_2 = r49
|
|
GR_P_3 = r50
|
|
GR_P_4 = r51
|
|
GR_START = r52
|
|
GR_SEGMENT = r53
|
|
GR_A = r54
|
|
GR_B = r55
|
|
GR_C = r56
|
|
GR_D = r57
|
|
GR_E = r58
|
|
GR_TEMP1 = r59
|
|
GR_TEMP2 = r60
|
|
GR_TEMP3 = r61
|
|
GR_TEMP4 = r62
|
|
GR_TEMP5 = r63
|
|
GR_TEMP6 = r64
|
|
GR_rshf = r64
|
|
|
|
RODATA
|
|
.align 64
|
|
|
|
LOCAL_OBJECT_START(Constants_Bits_of_2_by_pi)
|
|
data8 0x0000000000000000,0xA2F9836E4E441529
|
|
data8 0xFC2757D1F534DDC0,0xDB6295993C439041
|
|
data8 0xFE5163ABDEBBC561,0xB7246E3A424DD2E0
|
|
data8 0x06492EEA09D1921C,0xFE1DEB1CB129A73E
|
|
data8 0xE88235F52EBB4484,0xE99C7026B45F7E41
|
|
data8 0x3991D639835339F4,0x9C845F8BBDF9283B
|
|
data8 0x1FF897FFDE05980F,0xEF2F118B5A0A6D1F
|
|
data8 0x6D367ECF27CB09B7,0x4F463F669E5FEA2D
|
|
data8 0x7527BAC7EBE5F17B,0x3D0739F78A5292EA
|
|
data8 0x6BFB5FB11F8D5D08,0x56033046FC7B6BAB
|
|
data8 0xF0CFBC209AF4361D,0xA9E391615EE61B08
|
|
data8 0x6599855F14A06840,0x8DFFD8804D732731
|
|
data8 0x06061556CA73A8C9,0x60E27BC08C6B47C4
|
|
data8 0x19C367CDDCE8092A,0x8359C4768B961CA6
|
|
data8 0xDDAF44D15719053E,0xA5FF07053F7E33E8
|
|
data8 0x32C2DE4F98327DBB,0xC33D26EF6B1E5EF8
|
|
data8 0x9F3A1F35CAF27F1D,0x87F121907C7C246A
|
|
data8 0xFA6ED5772D30433B,0x15C614B59D19C3C2
|
|
data8 0xC4AD414D2C5D000C,0x467D862D71E39AC6
|
|
data8 0x9B0062337CD2B497,0xA7B4D55537F63ED7
|
|
data8 0x1810A3FC764D2A9D,0x64ABD770F87C6357
|
|
data8 0xB07AE715175649C0,0xD9D63B3884A7CB23
|
|
data8 0x24778AD623545AB9,0x1F001B0AF1DFCE19
|
|
data8 0xFF319F6A1E666157,0x9947FBACD87F7EB7
|
|
data8 0x652289E83260BFE6,0xCDC4EF09366CD43F
|
|
data8 0x5DD7DE16DE3B5892,0x9BDE2822D2E88628
|
|
data8 0x4D58E232CAC616E3,0x08CB7DE050C017A7
|
|
data8 0x1DF35BE01834132E,0x6212830148835B8E
|
|
data8 0xF57FB0ADF2E91E43,0x4A48D36710D8DDAA
|
|
data8 0x425FAECE616AA428,0x0AB499D3F2A6067F
|
|
data8 0x775C83C2A3883C61,0x78738A5A8CAFBDD7
|
|
data8 0x6F63A62DCBBFF4EF,0x818D67C12645CA55
|
|
data8 0x36D9CAD2A8288D61,0xC277C9121426049B
|
|
data8 0x4612C459C444C5C8,0x91B24DF31700AD43
|
|
data8 0xD4E5492910D5FDFC,0xBE00CC941EEECE70
|
|
data8 0xF53E1380F1ECC3E7,0xB328F8C79405933E
|
|
data8 0x71C1B3092EF3450B,0x9C12887B20AB9FB5
|
|
data8 0x2EC292472F327B6D,0x550C90A7721FE76B
|
|
data8 0x96CB314A1679E279,0x4189DFF49794E884
|
|
data8 0xE6E29731996BED88,0x365F5F0EFDBBB49A
|
|
data8 0x486CA46742727132,0x5D8DB8159F09E5BC
|
|
data8 0x25318D3974F71C05,0x30010C0D68084B58
|
|
data8 0xEE2C90AA4702E774,0x24D6BDA67DF77248
|
|
data8 0x6EEF169FA6948EF6,0x91B45153D1F20ACF
|
|
data8 0x3398207E4BF56863,0xB25F3EDD035D407F
|
|
data8 0x8985295255C06437,0x10D86D324832754C
|
|
data8 0x5BD4714E6E5445C1,0x090B69F52AD56614
|
|
data8 0x9D072750045DDB3B,0xB4C576EA17F9877D
|
|
data8 0x6B49BA271D296996,0xACCCC65414AD6AE2
|
|
data8 0x9089D98850722CBE,0xA4049407777030F3
|
|
data8 0x27FC00A871EA49C2,0x663DE06483DD9797
|
|
data8 0x3FA3FD94438C860D,0xDE41319D39928C70
|
|
data8 0xDDE7B7173BDF082B,0x3715A0805C93805A
|
|
data8 0x921110D8E80FAF80,0x6C4BFFDB0F903876
|
|
data8 0x185915A562BBCB61,0xB989C7BD401004F2
|
|
data8 0xD2277549F6B6EBBB,0x22DBAA140A2F2689
|
|
data8 0x768364333B091A94,0x0EAA3A51C2A31DAE
|
|
data8 0xEDAF12265C4DC26D,0x9C7A2D9756C0833F
|
|
data8 0x03F6F0098C402B99,0x316D07B43915200C
|
|
data8 0x5BC3D8C492F54BAD,0xC6A5CA4ECD37A736
|
|
data8 0xA9E69492AB6842DD,0xDE6319EF8C76528B
|
|
data8 0x6837DBFCABA1AE31,0x15DFA1AE00DAFB0C
|
|
data8 0x664D64B705ED3065,0x29BF56573AFF47B9
|
|
data8 0xF96AF3BE75DF9328,0x3080ABF68C6615CB
|
|
data8 0x040622FA1DE4D9A4,0xB33D8F1B5709CD36
|
|
data8 0xE9424EA4BE13B523,0x331AAAF0A8654FA5
|
|
data8 0xC1D20F3F0BCD785B,0x76F923048B7B7217
|
|
data8 0x8953A6C6E26E6F00,0xEBEF584A9BB7DAC4
|
|
data8 0xBA66AACFCF761D02,0xD12DF1B1C1998C77
|
|
data8 0xADC3DA4886A05DF7,0xF480C62FF0AC9AEC
|
|
data8 0xDDBC5C3F6DDED01F,0xC790B6DB2A3A25A3
|
|
data8 0x9AAF009353AD0457,0xB6B42D297E804BA7
|
|
data8 0x07DA0EAA76A1597B,0x2A12162DB7DCFDE5
|
|
data8 0xFAFEDB89FDBE896C,0x76E4FCA90670803E
|
|
data8 0x156E85FF87FD073E,0x2833676186182AEA
|
|
data8 0xBD4DAFE7B36E6D8F,0x3967955BBF3148D7
|
|
data8 0x8416DF30432DC735,0x6125CE70C9B8CB30
|
|
data8 0xFD6CBFA200A4E46C,0x05A0DD5A476F21D2
|
|
data8 0x1262845CB9496170,0xE0566B0152993755
|
|
data8 0x50B7D51EC4F1335F,0x6E13E4305DA92E85
|
|
data8 0xC3B21D3632A1A4B7,0x08D4B1EA21F716E4
|
|
data8 0x698F77FF2780030C,0x2D408DA0CD4F99A5
|
|
data8 0x20D3A2B30A5D2F42,0xF9B4CBDA11D0BE7D
|
|
data8 0xC1DB9BBD17AB81A2,0xCA5C6A0817552E55
|
|
data8 0x0027F0147F8607E1,0x640B148D4196DEBE
|
|
data8 0x872AFDDAB6256B34,0x897BFEF3059EBFB9
|
|
data8 0x4F6A68A82A4A5AC4,0x4FBCF82D985AD795
|
|
data8 0xC7F48D4D0DA63A20,0x5F57A4B13F149538
|
|
data8 0x800120CC86DD71B6,0xDEC9F560BF11654D
|
|
data8 0x6B0701ACB08CD0C0,0xB24855510EFB1EC3
|
|
data8 0x72953B06A33540C0,0x7BDC06CC45E0FA29
|
|
data8 0x4EC8CAD641F3E8DE,0x647CD8649B31BED9
|
|
data8 0xC397A4D45877C5E3,0x6913DAF03C3ABA46
|
|
data8 0x18465F7555F5BDD2,0xC6926E5D2EACED44
|
|
data8 0x0E423E1C87C461E9,0xFD29F3D6E7CA7C22
|
|
data8 0x35916FC5E0088DD7,0xFFE26A6EC6FDB0C1
|
|
data8 0x0893745D7CB2AD6B,0x9D6ECD7B723E6A11
|
|
data8 0xC6A9CFF7DF7329BA,0xC9B55100B70DB2E2
|
|
data8 0x24BA74607DE58AD8,0x742C150D0C188194
|
|
data8 0x667E162901767A9F,0xBEFDFDEF4556367E
|
|
data8 0xD913D9ECB9BA8BFC,0x97C427A831C36EF1
|
|
data8 0x36C59456A8D8B5A8,0xB40ECCCF2D891234
|
|
data8 0x576F89562CE3CE99,0xB920D6AA5E6B9C2A
|
|
data8 0x3ECC5F114A0BFDFB,0xF4E16D3B8E2C86E2
|
|
data8 0x84D4E9A9B4FCD1EE,0xEFC9352E61392F44
|
|
data8 0x2138C8D91B0AFC81,0x6A4AFBD81C2F84B4
|
|
data8 0x538C994ECC2254DC,0x552AD6C6C096190B
|
|
data8 0xB8701A649569605A,0x26EE523F0F117F11
|
|
data8 0xB5F4F5CBFC2DBC34,0xEEBC34CC5DE8605E
|
|
data8 0xDD9B8E67EF3392B8,0x17C99B5861BC57E1
|
|
data8 0xC68351103ED84871,0xDDDD1C2DA118AF46
|
|
data8 0x2C21D7F359987AD9,0xC0549EFA864FFC06
|
|
data8 0x56AE79E536228922,0xAD38DC9367AAE855
|
|
data8 0x3826829BE7CAA40D,0x51B133990ED7A948
|
|
data8 0x0569F0B265A7887F,0x974C8836D1F9B392
|
|
data8 0x214A827B21CF98DC,0x9F405547DC3A74E1
|
|
data8 0x42EB67DF9DFE5FD4,0x5EA4677B7AACBAA2
|
|
data8 0xF65523882B55BA41,0x086E59862A218347
|
|
data8 0x39E6E389D49EE540,0xFB49E956FFCA0F1C
|
|
data8 0x8A59C52BFA94C5C1,0xD3CFC50FAE5ADB86
|
|
data8 0xC5476243853B8621,0x94792C8761107B4C
|
|
data8 0x2A1A2C8012BF4390,0x2688893C78E4C4A8
|
|
data8 0x7BDBE5C23AC4EAF4,0x268A67F7BF920D2B
|
|
data8 0xA365B1933D0B7CBD,0xDC51A463DD27DDE1
|
|
data8 0x6919949A9529A828,0xCE68B4ED09209F44
|
|
data8 0xCA984E638270237C,0x7E32B90F8EF5A7E7
|
|
data8 0x561408F1212A9DB5,0x4D7E6F5119A5ABF9
|
|
data8 0xB5D6DF8261DD9602,0x36169F3AC4A1A283
|
|
data8 0x6DED727A8D39A9B8,0x825C326B5B2746ED
|
|
data8 0x34007700D255F4FC,0x4D59018071E0E13F
|
|
data8 0x89B295F364A8F1AE,0xA74B38FC4CEAB2BB
|
|
LOCAL_OBJECT_END(Constants_Bits_of_2_by_pi)
|
|
|
|
LOCAL_OBJECT_START(Constants_Bits_of_pi_by_2)
|
|
data8 0xC90FDAA22168C234,0x00003FFF
|
|
data8 0xC4C6628B80DC1CD1,0x00003FBF
|
|
LOCAL_OBJECT_END(Constants_Bits_of_pi_by_2)
|
|
|
|
.section .text
|
|
.global __libm_pi_by_2_reduce#
|
|
.proc __libm_pi_by_2_reduce#
|
|
.align 32
|
|
|
|
__libm_pi_by_2_reduce:
|
|
|
|
// X is in f8
|
|
// Place the two-piece result r (r_hi) in f8 and c (r_lo) in f9
|
|
// N is returned in r8
|
|
|
|
{ .mfi
|
|
alloc r34 = ar.pfs,2,34,0,0
|
|
fsetc.s3 0x00,0x7F // Set sf3 to round to zero, 82-bit prec, td, ftz
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
addl GR_BASE = @ltoff(Constants_Bits_of_2_by_pi#), gp
|
|
nop.f 999
|
|
mov GR_BIASL63 = 0x1003E
|
|
}
|
|
;;
|
|
|
|
|
|
// L -1-2-3-4
|
|
// 0 0 0 0 0. 1 0 1 0
|
|
// M 0 1 2 .... 63, 64 65 ... 127, 128
|
|
// ---------------------------------------------
|
|
// Segment 0. 1 , 2 , 3
|
|
// START = M - 63 M = 128 becomes 65
|
|
// LENGTH1 = START & 0x3F 65 become position 1
|
|
// SEGMENT = shr(START,6) + 1 0 maps to 1, 64 maps to 2,
|
|
// LENGTH2 = 64 - LENGTH1
|
|
// Address_BASE = shladd(SEGMENT,3) + BASE
|
|
|
|
|
|
{ .mmi
|
|
getf.exp GR_Exp_x = FR_input_X
|
|
ld8 GR_BASE = [GR_BASE]
|
|
mov GR_TEMP5 = 0x0FFFE
|
|
}
|
|
;;
|
|
|
|
// Define sigma_C := 2^63; sigma_B := 2^(-1); sigma_A := 2^(-65).
|
|
{ .mmi
|
|
getf.sig GR_x_lo = FR_input_X
|
|
mov GR_TEMP6 = 0x0FFBE
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Special Code for testing DE arguments
|
|
// movl GR_BIASL63 = 0x0000000000013FFE
|
|
// movl GR_x_lo = 0xFFFFFFFFFFFFFFFF
|
|
// setf.exp FR_X = GR_BIASL63
|
|
// setf.sig FR_ScaleP3 = GR_x_lo
|
|
// fmerge.se FR_X = FR_X,FR_ScaleP3
|
|
// Set sgn_x := sign(x); x := |x|; x_lo := 2 lsb of x.
|
|
// 2/pi is stored contiguously as
|
|
// 0x00000000 0x00000000.0xA2F....
|
|
// M = EXP - BIAS ( M >= 63)
|
|
// Given x = 2^m * 1.xxxx...xxx; we calculate L := 62 - m.
|
|
// Thus -1 <= L <= -16321.
|
|
{ .mmi
|
|
setf.exp FR_sigma_B = GR_TEMP5
|
|
setf.exp FR_sigma_A = GR_TEMP6
|
|
extr.u GR_M = GR_Exp_x,0,17
|
|
}
|
|
;;
|
|
|
|
{ .mii
|
|
and GR_x_lo = 0x03,GR_x_lo
|
|
sub GR_START = GR_M,GR_BIASL63
|
|
add GR_BASE = 8,GR_BASE // To effectively add 1 to SEGMENT
|
|
}
|
|
;;
|
|
|
|
{ .mii
|
|
and GR_LENGTH1 = 0x3F,GR_START
|
|
shr.u GR_SEGMENT = GR_START,6
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
shladd GR_BASE = GR_SEGMENT,3,GR_BASE
|
|
sub GR_LENGTH2 = 0x40,GR_LENGTH1
|
|
cmp.le p6,p7 = 0x2,GR_LENGTH1
|
|
}
|
|
;;
|
|
|
|
// P_0 is the two bits corresponding to bit positions L+2 and L+1
|
|
// P_1 is the 64-bit starting at bit position L
|
|
// P_2 is the 64-bit starting at bit position L-64
|
|
// P_3 is the 64-bit starting at bit position L-128
|
|
// P_4 is the 64-bit starting at bit position L-192
|
|
// P_1 is made up of Alo and Bhi
|
|
// P_1 = deposit Alo, position 0, length2 into P_1,position length1
|
|
// deposit Bhi, position length2, length1 into P_1, position 0
|
|
// P_2 is made up of Blo and Chi
|
|
// P_2 = deposit Blo, position 0, length2 into P_2, position length1
|
|
// deposit Chi, position length2, length1 into P_2, position 0
|
|
// P_3 is made up of Clo and Dhi
|
|
// P_3 = deposit Clo, position 0, length2 into P_3, position length1
|
|
// deposit Dhi, position length2, length1 into P_3, position 0
|
|
// P_4 is made up of Clo and Dhi
|
|
// P_4 = deposit Dlo, position 0, length2 into P_4, position length1
|
|
// deposit Ehi, position length2, length1 into P_4, position 0
|
|
{ .mfi
|
|
ld8 GR_A = [GR_BASE],8
|
|
fabs FR_X = FR_input_X
|
|
(p7) cmp.eq.unc p8,p9 = 0x1,GR_LENGTH1
|
|
}
|
|
;;
|
|
|
|
// ld_64 A at Base and increment Base by 8
|
|
// ld_64 B at Base and increment Base by 8
|
|
// ld_64 C at Base and increment Base by 8
|
|
// ld_64 D at Base and increment Base by 8
|
|
// ld_64 E at Base and increment Base by 8
|
|
// A/B/C/D
|
|
// ---------------------
|
|
// A, B, C, D, and E look like | length1 | length2 |
|
|
// ---------------------
|
|
// hi lo
|
|
{ .mlx
|
|
ld8 GR_B = [GR_BASE],8
|
|
movl GR_rshf = 0x43e8000000000000 // 1.10000 2^63 for right shift N_fix
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
ld8 GR_C = [GR_BASE],8
|
|
nop.m 999
|
|
(p8) extr.u GR_Temp = GR_A,63,1
|
|
}
|
|
;;
|
|
|
|
// If length1 >= 2,
|
|
// P_0 = deposit Ahi, position length2, 2 bit into P_0 at position 0.
|
|
{ .mii
|
|
ld8 GR_D = [GR_BASE],8
|
|
shl GR_TEMP1 = GR_A,GR_LENGTH1 // MM instruction
|
|
(p6) shr.u GR_P_0 = GR_A,GR_LENGTH2 // MM instruction
|
|
}
|
|
;;
|
|
|
|
{ .mii
|
|
ld8 GR_E = [GR_BASE],-40
|
|
shl GR_TEMP2 = GR_B,GR_LENGTH1 // MM instruction
|
|
shr.u GR_P_1 = GR_B,GR_LENGTH2 // MM instruction
|
|
}
|
|
;;
|
|
|
|
// Else
|
|
// Load 16 bit of ASUB from (Base_Address_of_A - 2)
|
|
// P_0 = ASUB & 0x3
|
|
// If length1 == 0,
|
|
// P_0 complete
|
|
// Else
|
|
// Deposit element 63 from Ahi and place in element 0 of P_0.
|
|
// Endif
|
|
// Endif
|
|
|
|
{ .mii
|
|
(p7) ld2 GR_ASUB = [GR_BASE],8
|
|
shl GR_TEMP3 = GR_C,GR_LENGTH1 // MM instruction
|
|
shr.u GR_P_2 = GR_C,GR_LENGTH2 // MM instruction
|
|
}
|
|
;;
|
|
|
|
{ .mii
|
|
setf.d FR_RSHF = GR_rshf // Form right shift const 1.100 * 2^63
|
|
shl GR_TEMP4 = GR_D,GR_LENGTH1 // MM instruction
|
|
shr.u GR_P_3 = GR_D,GR_LENGTH2 // MM instruction
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
(p7) and GR_P_0 = 0x03,GR_ASUB
|
|
(p6) and GR_P_0 = 0x03,GR_P_0
|
|
shr.u GR_P_4 = GR_E,GR_LENGTH2 // MM instruction
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
nop.m 999
|
|
or GR_P_1 = GR_P_1,GR_TEMP1
|
|
(p8) and GR_P_0 = 0x1,GR_P_0
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.sig FR_p_1 = GR_P_1
|
|
or GR_P_2 = GR_P_2,GR_TEMP2
|
|
(p8) shladd GR_P_0 = GR_P_0,1,GR_Temp
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
setf.sig FR_p_2 = GR_P_2
|
|
or GR_P_3 = GR_P_3,GR_TEMP3
|
|
fmerge.se FR_X = FR_sigma_B,FR_X
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.sig FR_p_3 = GR_P_3
|
|
or GR_P_4 = GR_P_4,GR_TEMP4
|
|
pmpy2.r GR_M = GR_P_0,GR_x_lo
|
|
}
|
|
;;
|
|
|
|
// P_1, P_2, P_3, P_4 are integers. They should be
|
|
// 2^(L-63) * P_1;
|
|
// 2^(L-63-64) * P_2;
|
|
// 2^(L-63-128) * P_3;
|
|
// 2^(L-63-192) * P_4;
|
|
// Since each of them need to be multiplied to x, we would scale
|
|
// both x and the P_j's by some convenient factors: scale each
|
|
// of P_j's up by 2^(63-L), and scale x down by 2^(L-63).
|
|
// p_1 := fcvt.xf ( P_1 )
|
|
// p_2 := fcvt.xf ( P_2 ) * 2^(-64)
|
|
// p_3 := fcvt.xf ( P_3 ) * 2^(-128)
|
|
// p_4 := fcvt.xf ( P_4 ) * 2^(-192)
|
|
// x= Set x's exp to -1 because 2^m*1.x...x *2^(L-63)=2^(-1)*1.x...xxx
|
|
// --------- --------- ---------
|
|
// | P_1 | | P_2 | | P_3 |
|
|
// --------- --------- ---------
|
|
// ---------
|
|
// X | X |
|
|
// ---------
|
|
// ----------------------------------------------------
|
|
// --------- ---------
|
|
// | A_hi | | A_lo |
|
|
// --------- ---------
|
|
// --------- ---------
|
|
// | B_hi | | B_lo |
|
|
// --------- ---------
|
|
// --------- ---------
|
|
// | C_hi | | C_lo |
|
|
// --------- ---------
|
|
// ====================================================
|
|
// ----------- --------- --------- ---------
|
|
// | S_0 | | S_1 | | S_2 | | S_3 |
|
|
// ----------- --------- --------- ---------
|
|
// | |___ binary point
|
|
// |___ possibly one more bit
|
|
//
|
|
// Let FPSR3 be set to round towards zero with widest precision
|
|
// and exponent range. Unless an explicit FPSR is given,
|
|
// round-to-nearest with widest precision and exponent range is
|
|
// used.
|
|
{ .mmi
|
|
setf.sig FR_p_4 = GR_P_4
|
|
mov GR_TEMP1 = 0x0FFBF
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.exp FR_ScaleP2 = GR_TEMP1
|
|
mov GR_TEMP2 = 0x0FF7F
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmi
|
|
setf.exp FR_ScaleP3 = GR_TEMP2
|
|
mov GR_TEMP4 = 0x1003E
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
setf.exp FR_sigma_C = GR_TEMP4
|
|
mov GR_Temp = 0x0FFDE
|
|
fcvt.xuf.s1 FR_p_1 = FR_p_1
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
setf.exp FR_TWOM33 = GR_Temp
|
|
fcvt.xuf.s1 FR_p_2 = FR_p_2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcvt.xuf.s1 FR_p_3 = FR_p_3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcvt.xuf.s1 FR_p_4 = FR_p_4
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Tmp_C := fmpy.fpsr3( x, p_1 );
|
|
// Tmp_B := fmpy.fpsr3( x, p_2 );
|
|
// Tmp_A := fmpy.fpsr3( x, p_3 );
|
|
// If Tmp_C >= sigma_C then
|
|
// C_hi := Tmp_C;
|
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
|
// Else
|
|
// C_hi := fadd.fpsr3(sigma_C, Tmp_C) - sigma_C
|
|
// C_lo := x*p_1 - C_hi ...fma, exact
|
|
// End If
|
|
// If Tmp_B >= sigma_B then
|
|
// B_hi := Tmp_B;
|
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
|
// Else
|
|
// B_hi := fadd.fpsr3(sigma_B, Tmp_B) - sigma_B
|
|
// B_lo := x*p_2 - B_hi ...fma, exact
|
|
// End If
|
|
// If Tmp_A >= sigma_A then
|
|
// A_hi := Tmp_A;
|
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
|
// Else
|
|
// A_hi := fadd.fpsr3(sigma_A, Tmp_A) - sigma_A
|
|
// Exact, regardless ...of rounding direction
|
|
// A_lo := x*p_3 - A_hi ...fma, exact
|
|
// Endif
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s3 FR_Tmp_C = FR_X,FR_p_1
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
mov GR_TEMP3 = 0x0FF3F
|
|
fmpy.s1 FR_p_2 = FR_p_2,FR_ScaleP2
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
setf.exp FR_ScaleP4 = GR_TEMP3
|
|
mov GR_TEMP4 = 0x10045
|
|
fmpy.s1 FR_p_3 = FR_p_3,FR_ScaleP3
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s3 FR_C_hi = FR_sigma_C,FR_Tmp_C // For Tmp_C < sigma_C case
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mmf
|
|
setf.exp FR_Tmp2_C = GR_TEMP4
|
|
nop.m 999
|
|
fmpy.s3 FR_Tmp_B = FR_X,FR_p_2
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
addl GR_BASE = @ltoff(Constants_Bits_of_pi_by_2#), gp
|
|
fcmp.ge.s1 p12, p9 = FR_Tmp_C,FR_sigma_C
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s3 FR_Tmp_A = FR_X,FR_p_3
|
|
nop.i 99
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 GR_BASE = [GR_BASE]
|
|
(p12) mov FR_C_hi = FR_Tmp_C
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 FR_C_hi = FR_C_hi,FR_sigma_C
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
|
|
// End If
|
|
// Step 3. Get reduced argument
|
|
// If sgn_x == 0 (that is original x is positive)
|
|
// D_hi := Pi_by_2_hi
|
|
// D_lo := Pi_by_2_lo
|
|
// Load from table
|
|
// Else
|
|
// D_hi := neg_Pi_by_2_hi
|
|
// D_lo := neg_Pi_by_2_lo
|
|
// Load from table
|
|
// End If
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 FR_p_4 = FR_p_4,FR_ScaleP4
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s3 FR_B_hi = FR_sigma_B,FR_Tmp_B // For Tmp_B < sigma_B case
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s3 FR_A_hi = FR_sigma_A,FR_Tmp_A // For Tmp_A < sigma_A case
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fcmp.ge.s1 p13, p10 = FR_Tmp_B,FR_sigma_B
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 FR_C_lo = FR_X,FR_p_1,FR_C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_D_hi = [GR_BASE],16
|
|
fcmp.ge.s1 p14, p11 = FR_Tmp_A,FR_sigma_A
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ldfe FR_D_lo = [GR_BASE]
|
|
(p13) mov FR_B_hi = FR_Tmp_B
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fsub.s1 FR_B_hi = FR_B_hi,FR_sigma_B
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) mov FR_A_hi = FR_Tmp_A
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fsub.s1 FR_A_hi = FR_A_hi,FR_sigma_A
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Note that C_hi is of integer value. We need only the
|
|
// last few bits. Thus we can ensure C_hi is never a big
|
|
// integer, freeing us from overflow worry.
|
|
// Tmp_C := fadd.fpsr3( C_hi, 2^(70) ) - 2^(70);
|
|
// Tmp_C is the upper portion of C_hi
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s3 FR_Tmp_C = FR_C_hi,FR_Tmp2_C
|
|
tbit.z p12,p9 = GR_Exp_x, 17
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 FR_B_lo = FR_X,FR_p_2,FR_B_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s3 FR_A = FR_B_hi,FR_C_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 FR_A_lo = FR_X,FR_p_3,FR_A_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 FR_Tmp_C = FR_Tmp_C,FR_Tmp2_C
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// *******************
|
|
// Step 2. Get N and f
|
|
// *******************
|
|
// We have all the components to obtain
|
|
// S_0, S_1, S_2, S_3 and thus N and f. We start by adding
|
|
// C_lo and B_hi. This sum together with C_hi estimates
|
|
// N and f well.
|
|
// A := fadd.fpsr3( B_hi, C_lo )
|
|
// B := max( B_hi, C_lo )
|
|
// b := min( B_hi, C_lo )
|
|
{ .mfi
|
|
nop.m 999
|
|
fmax.s1 FR_B = FR_B_hi,FR_C_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// We use a right-shift trick to get the integer part of A into the rightmost
|
|
// bits of the significand by adding 1.1000..00 * 2^63. This operation is good
|
|
// if |A| < 2^61, which it is in this case. We are doing this to save a few
|
|
// cycles over using fcvt.fx followed by fnorm. The second step of the trick
|
|
// is to subtract the same constant to float the rounded integer into a fp reg.
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
// N := round_to_nearest_integer_value( A );
|
|
fma.s1 FR_N_fix = FR_A, f1, FR_RSHF
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmin.s1 FR_b = FR_B_hi,FR_C_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
// C_hi := C_hi - Tmp_C ...0 <= C_hi < 2^7
|
|
fsub.s1 FR_C_hi = FR_C_hi,FR_Tmp_C
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
// a := (B - A) + b: Exact - note that a is either 0 or 2^(-64).
|
|
fsub.s1 FR_a = FR_B,FR_A
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fms.s1 FR_N = FR_N_fix, f1, FR_RSHF
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_a = FR_a,FR_b
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// f := A - N; Exact because lsb(A) >= 2^(-64) and |f| <= 1/2.
|
|
// N := convert to integer format( C_hi + N );
|
|
// M := P_0 * x_lo;
|
|
// N := N + M;
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 FR_f = FR_A,FR_N
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_N = FR_N,FR_C_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 FR_D_hi = f0, FR_D_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p9) fsub.s1 FR_D_lo = f0, FR_D_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_g = FR_A_hi,FR_B_lo // For Case 1, g=A_hi+B_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s3 FR_A = FR_A_hi,FR_B_lo // For Case 2, A=A_hi+B_lo w/ sf3
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
mov GR_Temp = 0x0FFCD // For Case 2, exponent of 2^-50
|
|
fmax.s1 FR_B = FR_A_hi,FR_B_lo // For Case 2, B=max(A_hi,B_lo)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// f = f + a Exact because a is 0 or 2^(-64);
|
|
// the msb of the sum is <= 1/2 and lsb >= 2^(-64).
|
|
{ .mfi
|
|
setf.exp FR_TWOM50 = GR_Temp // For Case 2, form 2^-50
|
|
fcvt.fx.s1 FR_N = FR_N
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_f = FR_f,FR_a
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmin.s1 FR_b = FR_A_hi,FR_B_lo // For Case 2, b=min(A_hi,B_lo)
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 FR_a = FR_B,FR_A // For Case 2, a=B-A
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_s_hi = FR_f,FR_g // For Case 1, s_hi=f+g
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_f_hi = FR_A,FR_f // For Case 2, f_hi=A+f
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fabs FR_f_abs = FR_f
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
getf.sig GR_N = FR_N
|
|
fsetc.s3 0x7F,0x40 // Reset sf3 to user settings + td
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 FR_s_lo = FR_f,FR_s_hi // For Case 1, s_lo=f-s_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fsub.s1 FR_f_lo = FR_f,FR_f_hi // For Case 2, f_lo=f-f_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi // For Case 1, r_hi=s_hi*D_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_a = FR_a,FR_b // For Case 2, a=a+b
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
|
|
// If sgn_x == 1 (that is original x was negative)
|
|
// N := 2^10 - N
|
|
// this maintains N to be non-negative, but still
|
|
// equivalent to the (negated N) mod 4.
|
|
// End If
|
|
{ .mfi
|
|
add GR_N = GR_N,GR_M
|
|
fcmp.ge.s1 p13, p10 = FR_f_abs,FR_TWOM33
|
|
mov GR_Temp = 0x00400
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
(p9) sub GR_N = GR_Temp,GR_N
|
|
fadd.s1 FR_s_lo = FR_s_lo,FR_g // For Case 1, s_lo=s_lo+g
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fadd.s1 FR_f_lo = FR_f_lo,FR_A // For Case 2, f_lo=f_lo+A
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// a := (B - A) + b Exact.
|
|
// Note that a is either 0 or 2^(-128).
|
|
// f_hi := A + f;
|
|
// f_lo := (f - f_hi) + A
|
|
// f_lo=f-f_hi is exact because either |f| >= |A|, in which
|
|
// case f-f_hi is clearly exact; or otherwise, 0<|f|<|A|
|
|
// means msb(f) <= msb(A) = 2^(-64) => |f| = 2^(-64).
|
|
// If f = 2^(-64), f-f_hi involves cancellation and is
|
|
// exact. If f = -2^(-64), then A + f is exact. Hence
|
|
// f-f_hi is -A exactly, giving f_lo = 0.
|
|
// f_lo := f_lo + a;
|
|
|
|
// If |f| >= 2^(-33)
|
|
// Case 1
|
|
// CASE := 1
|
|
// g := A_hi + B_lo;
|
|
// s_hi := f + g;
|
|
// s_lo := (f - s_hi) + g;
|
|
// Else
|
|
// Case 2
|
|
// CASE := 2
|
|
// A := fadd.fpsr3( A_hi, B_lo )
|
|
// B := max( A_hi, B_lo )
|
|
// b := min( A_hi, B_lo )
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fcmp.ge.unc.s1 p14, p11 = FR_f_abs,FR_TWOM50
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi //For Case 1, r_lo=s_hi*D_hi+r_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// If |f| >= 2^(-50) then
|
|
// s_hi := f_hi;
|
|
// s_lo := f_lo;
|
|
// Else
|
|
// f_lo := (f_lo + A_lo) + x*p_4
|
|
// s_hi := f_hi + f_lo
|
|
// s_lo := (f_hi - s_hi) + f_lo
|
|
// End If
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) mov FR_s_hi = FR_f_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fadd.s1 FR_f_lo = FR_f_lo,FR_a
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p14) mov FR_s_lo = FR_f_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 FR_f_lo = FR_f_lo,FR_A_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fma.s1 FR_f_lo = FR_X,FR_p_4,FR_f_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p13) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo //For Case 1, r_lo=s_hi*D_lo+r_lo
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 FR_s_hi = FR_f_hi,FR_f_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// r_hi := s_hi*D_hi
|
|
// r_lo := s_hi*D_hi - r_hi with fma
|
|
// r_lo := (s_hi*D_lo + r_lo) + s_lo*D_hi
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fmpy.s1 FR_r_hi = FR_s_hi,FR_D_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fsub.s1 FR_s_lo = FR_f_hi,FR_s_hi
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fms.s1 FR_r_lo = FR_s_hi,FR_D_hi,FR_r_hi
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
(p11) fadd.s1 FR_s_lo = FR_s_lo,FR_f_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fma.s1 FR_r_lo = FR_s_hi,FR_D_lo,FR_r_lo
|
|
nop.i 999
|
|
}
|
|
;;
|
|
|
|
// Return N, r_hi, r_lo
|
|
// We do not return CASE
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.s1 FR_r_lo = FR_s_lo,FR_D_hi,FR_r_lo
|
|
br.ret.sptk b0
|
|
}
|
|
;;
|
|
|
|
.endp __libm_pi_by_2_reduce#
|