mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-23 13:30:06 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
769 lines
24 KiB
ArmAsm
769 lines
24 KiB
ArmAsm
.file "sincos.s"
|
|
|
|
|
|
// Copyright (c) 2000 - 2005, Intel Corporation
|
|
// All rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote
|
|
// products derived from this software without specific prior written
|
|
// permission.
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
|
|
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
|
|
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Intel Corporation is the author of this code, and requests that all
|
|
// problem reports or change requests be submitted to it directly at
|
|
// http://www.intel.com/software/products/opensource/libraries/num.htm.
|
|
//
|
|
// History
|
|
//==============================================================
|
|
// 02/02/00 Initial version
|
|
// 04/02/00 Unwind support added.
|
|
// 06/16/00 Updated tables to enforce symmetry
|
|
// 08/31/00 Saved 2 cycles in main path, and 9 in other paths.
|
|
// 09/20/00 The updated tables regressed to an old version, so reinstated them
|
|
// 10/18/00 Changed one table entry to ensure symmetry
|
|
// 01/03/01 Improved speed, fixed flag settings for small arguments.
|
|
// 02/18/02 Large arguments processing routine excluded
|
|
// 05/20/02 Cleaned up namespace and sf0 syntax
|
|
// 06/03/02 Insure inexact flag set for large arg result
|
|
// 09/05/02 Work range is widened by reduction strengthen (3 parts of Pi/16)
|
|
// 02/10/03 Reordered header: .section, .global, .proc, .align
|
|
// 08/08/03 Improved performance
|
|
// 10/28/04 Saved sincos_r_sincos to avoid clobber by dynamic loader
|
|
// 03/31/05 Reformatted delimiters between data tables
|
|
|
|
// API
|
|
//==============================================================
|
|
// double sin( double x);
|
|
// double cos( double x);
|
|
//
|
|
// Overview of operation
|
|
//==============================================================
|
|
//
|
|
// Step 1
|
|
// ======
|
|
// Reduce x to region -1/2*pi/2^k ===== 0 ===== +1/2*pi/2^k where k=4
|
|
// divide x by pi/2^k.
|
|
// Multiply by 2^k/pi.
|
|
// nfloat = Round result to integer (round-to-nearest)
|
|
//
|
|
// r = x - nfloat * pi/2^k
|
|
// Do this as ((((x - nfloat * HIGH(pi/2^k))) -
|
|
// nfloat * LOW(pi/2^k)) -
|
|
// nfloat * LOWEST(pi/2^k) for increased accuracy.
|
|
// pi/2^k is stored as two numbers that when added make pi/2^k.
|
|
// pi/2^k = HIGH(pi/2^k) + LOW(pi/2^k)
|
|
// HIGH and LOW parts are rounded to zero values,
|
|
// and LOWEST is rounded to nearest one.
|
|
//
|
|
// x = (nfloat * pi/2^k) + r
|
|
// r is small enough that we can use a polynomial approximation
|
|
// and is referred to as the reduced argument.
|
|
//
|
|
// Step 3
|
|
// ======
|
|
// Take the unreduced part and remove the multiples of 2pi.
|
|
// So nfloat = nfloat (with lower k+1 bits cleared) + lower k+1 bits
|
|
//
|
|
// nfloat (with lower k+1 bits cleared) is a multiple of 2^(k+1)
|
|
// N * 2^(k+1)
|
|
// nfloat * pi/2^k = N * 2^(k+1) * pi/2^k + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N * 2 * pi + (lower k+1 bits) * pi/2^k
|
|
// nfloat * pi/2^k = N2pi + M * pi/2^k
|
|
//
|
|
//
|
|
// Sin(x) = Sin((nfloat * pi/2^k) + r)
|
|
// = Sin(nfloat * pi/2^k) * Cos(r) + Cos(nfloat * pi/2^k) * Sin(r)
|
|
//
|
|
// Sin(nfloat * pi/2^k) = Sin(N2pi + Mpi/2^k)
|
|
// = Sin(N2pi)Cos(Mpi/2^k) + Cos(N2pi)Sin(Mpi/2^k)
|
|
// = Sin(Mpi/2^k)
|
|
//
|
|
// Cos(nfloat * pi/2^k) = Cos(N2pi + Mpi/2^k)
|
|
// = Cos(N2pi)Cos(Mpi/2^k) + Sin(N2pi)Sin(Mpi/2^k)
|
|
// = Cos(Mpi/2^k)
|
|
//
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
//
|
|
// Step 4
|
|
// ======
|
|
// 0 <= M < 2^(k+1)
|
|
// There are 2^(k+1) Sin entries in a table.
|
|
// There are 2^(k+1) Cos entries in a table.
|
|
//
|
|
// Get Sin(Mpi/2^k) and Cos(Mpi/2^k) by table lookup.
|
|
//
|
|
//
|
|
// Step 5
|
|
// ======
|
|
// Calculate Cos(r) and Sin(r) by polynomial approximation.
|
|
//
|
|
// Cos(r) = 1 + r^2 q1 + r^4 q2 + r^6 q3 + ... = Series for Cos
|
|
// Sin(r) = r + r^3 p1 + r^5 p2 + r^7 p3 + ... = Series for Sin
|
|
//
|
|
// and the coefficients q1, q2, ... and p1, p2, ... are stored in a table
|
|
//
|
|
//
|
|
// Calculate
|
|
// Sin(x) = Sin(Mpi/2^k) Cos(r) + Cos(Mpi/2^k) Sin(r)
|
|
//
|
|
// as follows
|
|
//
|
|
// S[m] = Sin(Mpi/2^k) and C[m] = Cos(Mpi/2^k)
|
|
// rsq = r*r
|
|
//
|
|
//
|
|
// P = p1 + r^2p2 + r^4p3 + r^6p4
|
|
// Q = q1 + r^2q2 + r^4q3 + r^6q4
|
|
//
|
|
// rcub = r * rsq
|
|
// Sin(r) = r + rcub * P
|
|
// = r + r^3p1 + r^5p2 + r^7p3 + r^9p4 + ... = Sin(r)
|
|
//
|
|
// The coefficients are not exactly these values, but almost.
|
|
//
|
|
// p1 = -1/6 = -1/3!
|
|
// p2 = 1/120 = 1/5!
|
|
// p3 = -1/5040 = -1/7!
|
|
// p4 = 1/362889 = 1/9!
|
|
//
|
|
// P = r + rcub * P
|
|
//
|
|
// Answer = S[m] Cos(r) + [Cm] P
|
|
//
|
|
// Cos(r) = 1 + rsq Q
|
|
// Cos(r) = 1 + r^2 Q
|
|
// Cos(r) = 1 + r^2 (q1 + r^2q2 + r^4q3 + r^6q4)
|
|
// Cos(r) = 1 + r^2q1 + r^4q2 + r^6q3 + r^8q4 + ...
|
|
//
|
|
// S[m] Cos(r) = S[m](1 + rsq Q)
|
|
// S[m] Cos(r) = S[m] + Sm rsq Q
|
|
// S[m] Cos(r) = S[m] + s_rsq Q
|
|
// Q = S[m] + s_rsq Q
|
|
//
|
|
// Then,
|
|
//
|
|
// Answer = Q + C[m] P
|
|
|
|
|
|
// Registers used
|
|
//==============================================================
|
|
// general input registers:
|
|
// r14 -> r26
|
|
// r32 -> r35
|
|
|
|
// predicate registers used:
|
|
// p6 -> p11
|
|
|
|
// floating-point registers used
|
|
// f9 -> f15
|
|
// f32 -> f61
|
|
|
|
// Assembly macros
|
|
//==============================================================
|
|
sincos_NORM_f8 = f9
|
|
sincos_W = f10
|
|
sincos_int_Nfloat = f11
|
|
sincos_Nfloat = f12
|
|
|
|
sincos_r = f13
|
|
sincos_rsq = f14
|
|
sincos_rcub = f15
|
|
sincos_save_tmp = f15
|
|
|
|
sincos_Inv_Pi_by_16 = f32
|
|
sincos_Pi_by_16_1 = f33
|
|
sincos_Pi_by_16_2 = f34
|
|
|
|
sincos_Inv_Pi_by_64 = f35
|
|
|
|
sincos_Pi_by_16_3 = f36
|
|
|
|
sincos_r_exact = f37
|
|
|
|
sincos_Sm = f38
|
|
sincos_Cm = f39
|
|
|
|
sincos_P1 = f40
|
|
sincos_Q1 = f41
|
|
sincos_P2 = f42
|
|
sincos_Q2 = f43
|
|
sincos_P3 = f44
|
|
sincos_Q3 = f45
|
|
sincos_P4 = f46
|
|
sincos_Q4 = f47
|
|
|
|
sincos_P_temp1 = f48
|
|
sincos_P_temp2 = f49
|
|
|
|
sincos_Q_temp1 = f50
|
|
sincos_Q_temp2 = f51
|
|
|
|
sincos_P = f52
|
|
sincos_Q = f53
|
|
|
|
sincos_srsq = f54
|
|
|
|
sincos_SIG_INV_PI_BY_16_2TO61 = f55
|
|
sincos_RSHF_2TO61 = f56
|
|
sincos_RSHF = f57
|
|
sincos_2TOM61 = f58
|
|
sincos_NFLOAT = f59
|
|
sincos_W_2TO61_RSH = f60
|
|
|
|
fp_tmp = f61
|
|
|
|
/////////////////////////////////////////////////////////////
|
|
|
|
sincos_GR_sig_inv_pi_by_16 = r14
|
|
sincos_GR_rshf_2to61 = r15
|
|
sincos_GR_rshf = r16
|
|
sincos_GR_exp_2tom61 = r17
|
|
sincos_GR_n = r18
|
|
sincos_GR_m = r19
|
|
sincos_GR_32m = r19
|
|
sincos_GR_all_ones = r19
|
|
sincos_AD_1 = r20
|
|
sincos_AD_2 = r21
|
|
sincos_exp_limit = r22
|
|
sincos_r_signexp = r23
|
|
sincos_r_17_ones = r24
|
|
sincos_r_sincos = r25
|
|
sincos_r_exp = r26
|
|
|
|
GR_SAVE_PFS = r33
|
|
GR_SAVE_B0 = r34
|
|
GR_SAVE_GP = r35
|
|
GR_SAVE_r_sincos = r36
|
|
|
|
|
|
RODATA
|
|
|
|
// Pi/16 parts
|
|
.align 16
|
|
LOCAL_OBJECT_START(double_sincos_pi)
|
|
data8 0xC90FDAA22168C234, 0x00003FFC // pi/16 1st part
|
|
data8 0xC4C6628B80DC1CD1, 0x00003FBC // pi/16 2nd part
|
|
data8 0xA4093822299F31D0, 0x00003F7A // pi/16 3rd part
|
|
LOCAL_OBJECT_END(double_sincos_pi)
|
|
|
|
// Coefficients for polynomials
|
|
LOCAL_OBJECT_START(double_sincos_pq_k4)
|
|
data8 0x3EC71C963717C63A // P4
|
|
data8 0x3EF9FFBA8F191AE6 // Q4
|
|
data8 0xBF2A01A00F4E11A8 // P3
|
|
data8 0xBF56C16C05AC77BF // Q3
|
|
data8 0x3F8111111110F167 // P2
|
|
data8 0x3FA555555554DD45 // Q2
|
|
data8 0xBFC5555555555555 // P1
|
|
data8 0xBFDFFFFFFFFFFFFC // Q1
|
|
LOCAL_OBJECT_END(double_sincos_pq_k4)
|
|
|
|
// Sincos table (S[m], C[m])
|
|
LOCAL_OBJECT_START(double_sin_cos_beta_k4)
|
|
|
|
data8 0x0000000000000000 , 0x00000000 // sin( 0 pi/16) S0
|
|
data8 0x8000000000000000 , 0x00003fff // cos( 0 pi/16) C0
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin( 1 pi/16) S1
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // cos( 1 pi/16) C1
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // sin( 2 pi/16) S2
|
|
data8 0xec835e79946a3146 , 0x00003ffe // cos( 2 pi/16) C2
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // sin( 3 pi/16) S3
|
|
data8 0xd4db3148750d181a , 0x00003ffe // cos( 3 pi/16) C3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // sin( 4 pi/16) S4
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // cos( 4 pi/16) C4
|
|
//
|
|
data8 0xd4db3148750d181a , 0x00003ffe // sin( 5 pi/16) C3
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // cos( 5 pi/16) S3
|
|
//
|
|
data8 0xec835e79946a3146 , 0x00003ffe // sin( 6 pi/16) C2
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // cos( 6 pi/16) S2
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 7 pi/16) C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos( 7 pi/16) S1
|
|
//
|
|
data8 0x8000000000000000 , 0x00003fff // sin( 8 pi/16) C0
|
|
data8 0x0000000000000000 , 0x00000000 // cos( 8 pi/16) S0
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // sin( 9 pi/16) C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos( 9 pi/16) -S1
|
|
//
|
|
data8 0xec835e79946a3146 , 0x00003ffe // sin(10 pi/16) C2
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // cos(10 pi/16) -S2
|
|
//
|
|
data8 0xd4db3148750d181a , 0x00003ffe // sin(11 pi/16) C3
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(11 pi/16) -S3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // sin(12 pi/16) S4
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // cos(12 pi/16) -S4
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // sin(13 pi/16) S3
|
|
data8 0xd4db3148750d181a , 0x0000bffe // cos(13 pi/16) -C3
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // sin(14 pi/16) S2
|
|
data8 0xec835e79946a3146 , 0x0000bffe // cos(14 pi/16) -C2
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // sin(15 pi/16) S1
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(15 pi/16) -C1
|
|
//
|
|
data8 0x0000000000000000 , 0x00000000 // sin(16 pi/16) S0
|
|
data8 0x8000000000000000 , 0x0000bfff // cos(16 pi/16) -C0
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(17 pi/16) -S1
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // cos(17 pi/16) -C1
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // sin(18 pi/16) -S2
|
|
data8 0xec835e79946a3146 , 0x0000bffe // cos(18 pi/16) -C2
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(19 pi/16) -S3
|
|
data8 0xd4db3148750d181a , 0x0000bffe // cos(19 pi/16) -C3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // sin(20 pi/16) -S4
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // cos(20 pi/16) -S4
|
|
//
|
|
data8 0xd4db3148750d181a , 0x0000bffe // sin(21 pi/16) -C3
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // cos(21 pi/16) -S3
|
|
//
|
|
data8 0xec835e79946a3146 , 0x0000bffe // sin(22 pi/16) -C2
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // cos(22 pi/16) -S2
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(23 pi/16) -C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // cos(23 pi/16) -S1
|
|
//
|
|
data8 0x8000000000000000 , 0x0000bfff // sin(24 pi/16) -C0
|
|
data8 0x0000000000000000 , 0x00000000 // cos(24 pi/16) S0
|
|
//
|
|
data8 0xfb14be7fbae58157 , 0x0000bffe // sin(25 pi/16) -C1
|
|
data8 0xc7c5c1e34d3055b3 , 0x00003ffc // cos(25 pi/16) S1
|
|
//
|
|
data8 0xec835e79946a3146 , 0x0000bffe // sin(26 pi/16) -C2
|
|
data8 0xc3ef1535754b168e , 0x00003ffd // cos(26 pi/16) S2
|
|
//
|
|
data8 0xd4db3148750d181a , 0x0000bffe // sin(27 pi/16) -C3
|
|
data8 0x8e39d9cd73464364 , 0x00003ffe // cos(27 pi/16) S3
|
|
//
|
|
data8 0xb504f333f9de6484 , 0x0000bffe // sin(28 pi/16) -S4
|
|
data8 0xb504f333f9de6484 , 0x00003ffe // cos(28 pi/16) S4
|
|
//
|
|
data8 0x8e39d9cd73464364 , 0x0000bffe // sin(29 pi/16) -S3
|
|
data8 0xd4db3148750d181a , 0x00003ffe // cos(29 pi/16) C3
|
|
//
|
|
data8 0xc3ef1535754b168e , 0x0000bffd // sin(30 pi/16) -S2
|
|
data8 0xec835e79946a3146 , 0x00003ffe // cos(30 pi/16) C2
|
|
//
|
|
data8 0xc7c5c1e34d3055b3 , 0x0000bffc // sin(31 pi/16) -S1
|
|
data8 0xfb14be7fbae58157 , 0x00003ffe // cos(31 pi/16) C1
|
|
//
|
|
data8 0x0000000000000000 , 0x00000000 // sin(32 pi/16) S0
|
|
data8 0x8000000000000000 , 0x00003fff // cos(32 pi/16) C0
|
|
LOCAL_OBJECT_END(double_sin_cos_beta_k4)
|
|
|
|
.section .text
|
|
|
|
////////////////////////////////////////////////////////
|
|
// There are two entry points: sin and cos
|
|
|
|
|
|
// If from sin, p8 is true
|
|
// If from cos, p9 is true
|
|
|
|
GLOBAL_IEEE754_ENTRY(sin)
|
|
|
|
{ .mlx
|
|
getf.exp sincos_r_signexp = f8
|
|
movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
|
|
}
|
|
{ .mlx
|
|
addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
|
|
movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 sincos_AD_1 = [sincos_AD_1]
|
|
fnorm.s0 sincos_NORM_f8 = f8 // Normalize argument
|
|
cmp.eq p8,p9 = r0, r0 // set p8 (clear p9) for sin
|
|
}
|
|
{ .mib
|
|
mov sincos_GR_exp_2tom61 = 0xffff-61 // exponent of scale 2^-61
|
|
mov sincos_r_sincos = 0x0 // sincos_r_sincos = 0 for sin
|
|
br.cond.sptk _SINCOS_COMMON // go to common part
|
|
}
|
|
;;
|
|
|
|
GLOBAL_IEEE754_END(sin)
|
|
libm_alias_double_other (__sin, sin)
|
|
|
|
GLOBAL_IEEE754_ENTRY(cos)
|
|
|
|
{ .mlx
|
|
getf.exp sincos_r_signexp = f8
|
|
movl sincos_GR_sig_inv_pi_by_16 = 0xA2F9836E4E44152A // signd of 16/pi
|
|
}
|
|
{ .mlx
|
|
addl sincos_AD_1 = @ltoff(double_sincos_pi), gp
|
|
movl sincos_GR_rshf_2to61 = 0x47b8000000000000 // 1.1 2^(63+63-2)
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
ld8 sincos_AD_1 = [sincos_AD_1]
|
|
fnorm.s1 sincos_NORM_f8 = f8 // Normalize argument
|
|
cmp.eq p9,p8 = r0, r0 // set p9 (clear p8) for cos
|
|
}
|
|
{ .mib
|
|
mov sincos_GR_exp_2tom61 = 0xffff-61 // exp of scale 2^-61
|
|
mov sincos_r_sincos = 0x8 // sincos_r_sincos = 8 for cos
|
|
nop.b 999
|
|
}
|
|
;;
|
|
|
|
////////////////////////////////////////////////////////
|
|
// All entry points end up here.
|
|
// If from sin, sincos_r_sincos is 0 and p8 is true
|
|
// If from cos, sincos_r_sincos is 8 = 2^(k-1) and p9 is true
|
|
// We add sincos_r_sincos to N
|
|
|
|
///////////// Common sin and cos part //////////////////
|
|
_SINCOS_COMMON:
|
|
|
|
|
|
// Form two constants we need
|
|
// 16/pi * 2^-2 * 2^63, scaled by 2^61 since we just loaded the significand
|
|
// 1.1000...000 * 2^(63+63-2) to right shift int(W) into the low significand
|
|
{ .mfi
|
|
setf.sig sincos_SIG_INV_PI_BY_16_2TO61 = sincos_GR_sig_inv_pi_by_16
|
|
fclass.m p6,p0 = f8, 0xe7 // if x = 0,inf,nan
|
|
mov sincos_exp_limit = 0x1001a
|
|
}
|
|
{ .mlx
|
|
setf.d sincos_RSHF_2TO61 = sincos_GR_rshf_2to61
|
|
movl sincos_GR_rshf = 0x43e8000000000000 // 1.1 2^63
|
|
} // Right shift
|
|
;;
|
|
|
|
// Form another constant
|
|
// 2^-61 for scaling Nfloat
|
|
// 0x1001a is register_bias + 27.
|
|
// So if f8 >= 2^27, go to large argument routines
|
|
{ .mfi
|
|
alloc r32 = ar.pfs, 1, 4, 0, 0
|
|
fclass.m p11,p0 = f8, 0x0b // Test for x=unorm
|
|
mov sincos_GR_all_ones = -1 // For "inexect" constant create
|
|
}
|
|
{ .mib
|
|
setf.exp sincos_2TOM61 = sincos_GR_exp_2tom61
|
|
nop.i 999
|
|
(p6) br.cond.spnt _SINCOS_SPECIAL_ARGS
|
|
}
|
|
;;
|
|
|
|
// Load the two pieces of pi/16
|
|
// Form another constant
|
|
// 1.1000...000 * 2^63, the right shift constant
|
|
{ .mmb
|
|
ldfe sincos_Pi_by_16_1 = [sincos_AD_1],16
|
|
setf.d sincos_RSHF = sincos_GR_rshf
|
|
(p11) br.cond.spnt _SINCOS_UNORM // Branch if x=unorm
|
|
}
|
|
;;
|
|
|
|
_SINCOS_COMMON2:
|
|
// Return here if x=unorm
|
|
// Create constant used to set inexact
|
|
{ .mmi
|
|
ldfe sincos_Pi_by_16_2 = [sincos_AD_1],16
|
|
setf.sig fp_tmp = sincos_GR_all_ones
|
|
nop.i 999
|
|
};;
|
|
|
|
// Select exponent (17 lsb)
|
|
{ .mfi
|
|
ldfe sincos_Pi_by_16_3 = [sincos_AD_1],16
|
|
nop.f 999
|
|
dep.z sincos_r_exp = sincos_r_signexp, 0, 17
|
|
};;
|
|
|
|
// Polynomial coefficients (Q4, P4, Q3, P3, Q2, Q1, P2, P1) loading
|
|
// p10 is true if we must call routines to handle larger arguments
|
|
// p10 is true if f8 exp is >= 0x1001a (2^27)
|
|
{ .mmb
|
|
ldfpd sincos_P4,sincos_Q4 = [sincos_AD_1],16
|
|
cmp.ge p10,p0 = sincos_r_exp,sincos_exp_limit
|
|
(p10) br.cond.spnt _SINCOS_LARGE_ARGS // Go to "large args" routine
|
|
};;
|
|
|
|
// sincos_W = x * sincos_Inv_Pi_by_16
|
|
// Multiply x by scaled 16/pi and add large const to shift integer part of W to
|
|
// rightmost bits of significand
|
|
{ .mfi
|
|
ldfpd sincos_P3,sincos_Q3 = [sincos_AD_1],16
|
|
fma.s1 sincos_W_2TO61_RSH = sincos_NORM_f8,sincos_SIG_INV_PI_BY_16_2TO61,sincos_RSHF_2TO61
|
|
nop.i 999
|
|
};;
|
|
|
|
// get N = (int)sincos_int_Nfloat
|
|
// sincos_NFLOAT = Round_Int_Nearest(sincos_W)
|
|
// This is done by scaling back by 2^-61 and subtracting the shift constant
|
|
{ .mmf
|
|
getf.sig sincos_GR_n = sincos_W_2TO61_RSH
|
|
ldfpd sincos_P2,sincos_Q2 = [sincos_AD_1],16
|
|
fms.s1 sincos_NFLOAT = sincos_W_2TO61_RSH,sincos_2TOM61,sincos_RSHF
|
|
};;
|
|
|
|
// sincos_r = -sincos_Nfloat * sincos_Pi_by_16_1 + x
|
|
{ .mfi
|
|
ldfpd sincos_P1,sincos_Q1 = [sincos_AD_1],16
|
|
fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_1, sincos_NORM_f8
|
|
nop.i 999
|
|
};;
|
|
|
|
// Add 2^(k-1) (which is in sincos_r_sincos) to N
|
|
{ .mmi
|
|
add sincos_GR_n = sincos_GR_n, sincos_r_sincos
|
|
;;
|
|
// Get M (least k+1 bits of N)
|
|
and sincos_GR_m = 0x1f,sincos_GR_n
|
|
nop.i 999
|
|
};;
|
|
|
|
// sincos_r = sincos_r -sincos_Nfloat * sincos_Pi_by_16_2
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 sincos_r = sincos_NFLOAT, sincos_Pi_by_16_2, sincos_r
|
|
shl sincos_GR_32m = sincos_GR_m,5
|
|
};;
|
|
|
|
// Add 32*M to address of sin_cos_beta table
|
|
// For sin denorm. - set uflow
|
|
{ .mfi
|
|
add sincos_AD_2 = sincos_GR_32m, sincos_AD_1
|
|
(p8) fclass.m.unc p10,p0 = f8,0x0b
|
|
nop.i 999
|
|
};;
|
|
|
|
// Load Sin and Cos table value using obtained index m (sincosf_AD_2)
|
|
{ .mfi
|
|
ldfe sincos_Sm = [sincos_AD_2],16
|
|
nop.f 999
|
|
nop.i 999
|
|
};;
|
|
|
|
// get rsq = r*r
|
|
{ .mfi
|
|
ldfe sincos_Cm = [sincos_AD_2]
|
|
fma.s1 sincos_rsq = sincos_r, sincos_r, f0 // r^2 = r*r
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 fp_tmp = fp_tmp,fp_tmp // forces inexact flag
|
|
nop.i 999
|
|
};;
|
|
|
|
// sincos_r_exact = sincos_r -sincos_Nfloat * sincos_Pi_by_16_3
|
|
{ .mfi
|
|
nop.m 999
|
|
fnma.s1 sincos_r_exact = sincos_NFLOAT, sincos_Pi_by_16_3, sincos_r
|
|
nop.i 999
|
|
};;
|
|
|
|
// Polynomials calculation
|
|
// P_1 = P4*r^2 + P3
|
|
// Q_2 = Q4*r^2 + Q3
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_P_temp1 = sincos_rsq, sincos_P4, sincos_P3
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_Q_temp1 = sincos_rsq, sincos_Q4, sincos_Q3
|
|
nop.i 999
|
|
};;
|
|
|
|
// get rcube = r^3 and S[m]*r^2
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 sincos_srsq = sincos_Sm,sincos_rsq
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s1 sincos_rcub = sincos_r_exact, sincos_rsq
|
|
nop.i 999
|
|
};;
|
|
|
|
// Polynomials calculation
|
|
// Q_2 = Q_1*r^2 + Q2
|
|
// P_1 = P_1*r^2 + P2
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_Q_temp2 = sincos_rsq, sincos_Q_temp1, sincos_Q2
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_P_temp2 = sincos_rsq, sincos_P_temp1, sincos_P2
|
|
nop.i 999
|
|
};;
|
|
|
|
// Polynomials calculation
|
|
// Q = Q_2*r^2 + Q1
|
|
// P = P_2*r^2 + P1
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_Q = sincos_rsq, sincos_Q_temp2, sincos_Q1
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_P = sincos_rsq, sincos_P_temp2, sincos_P1
|
|
nop.i 999
|
|
};;
|
|
|
|
// Get final P and Q
|
|
// Q = Q*S[m]*r^2 + S[m]
|
|
// P = P*r^3 + r
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_Q = sincos_srsq,sincos_Q, sincos_Sm
|
|
nop.i 999
|
|
}
|
|
{ .mfi
|
|
nop.m 999
|
|
fma.s1 sincos_P = sincos_rcub,sincos_P, sincos_r_exact
|
|
nop.i 999
|
|
};;
|
|
|
|
// If sin(denormal), force underflow to be set
|
|
{ .mfi
|
|
nop.m 999
|
|
(p10) fmpy.d.s0 fp_tmp = sincos_NORM_f8,sincos_NORM_f8
|
|
nop.i 999
|
|
};;
|
|
|
|
// Final calculation
|
|
// result = C[m]*P + Q
|
|
{ .mfb
|
|
nop.m 999
|
|
fma.d.s0 f8 = sincos_Cm, sincos_P, sincos_Q
|
|
br.ret.sptk b0 // Exit for common path
|
|
};;
|
|
|
|
////////// x = 0/Inf/NaN path //////////////////
|
|
_SINCOS_SPECIAL_ARGS:
|
|
.pred.rel "mutex",p8,p9
|
|
// sin(+/-0) = +/-0
|
|
// sin(Inf) = NaN
|
|
// sin(NaN) = NaN
|
|
{ .mfi
|
|
nop.m 999
|
|
(p8) fma.d.s0 f8 = f8, f0, f0 // sin(+/-0,NaN,Inf)
|
|
nop.i 999
|
|
}
|
|
// cos(+/-0) = 1.0
|
|
// cos(Inf) = NaN
|
|
// cos(NaN) = NaN
|
|
{ .mfb
|
|
nop.m 999
|
|
(p9) fma.d.s0 f8 = f8, f0, f1 // cos(+/-0,NaN,Inf)
|
|
br.ret.sptk b0 // Exit for x = 0/Inf/NaN path
|
|
};;
|
|
|
|
_SINCOS_UNORM:
|
|
// Here if x=unorm
|
|
{ .mfb
|
|
getf.exp sincos_r_signexp = sincos_NORM_f8 // Get signexp of x
|
|
fcmp.eq.s0 p11,p0 = f8, f0 // Dummy op to set denorm flag
|
|
br.cond.sptk _SINCOS_COMMON2 // Return to main path
|
|
};;
|
|
|
|
GLOBAL_IEEE754_END(cos)
|
|
libm_alias_double_other (__cos, cos)
|
|
|
|
//////////// x >= 2^27 - large arguments routine call ////////////
|
|
LOCAL_LIBM_ENTRY(__libm_callout_sincos)
|
|
_SINCOS_LARGE_ARGS:
|
|
.prologue
|
|
{ .mfi
|
|
mov GR_SAVE_r_sincos = sincos_r_sincos // Save sin or cos
|
|
nop.f 999
|
|
.save ar.pfs,GR_SAVE_PFS
|
|
mov GR_SAVE_PFS = ar.pfs
|
|
}
|
|
;;
|
|
|
|
{ .mfi
|
|
mov GR_SAVE_GP = gp
|
|
nop.f 999
|
|
.save b0, GR_SAVE_B0
|
|
mov GR_SAVE_B0 = b0
|
|
}
|
|
|
|
.body
|
|
{ .mbb
|
|
setf.sig sincos_save_tmp = sincos_GR_all_ones// inexact set
|
|
nop.b 999
|
|
(p8) br.call.sptk.many b0 = __libm_sin_large# // sin(large_X)
|
|
|
|
};;
|
|
|
|
{ .mbb
|
|
cmp.ne p9,p0 = GR_SAVE_r_sincos, r0 // set p9 if cos
|
|
nop.b 999
|
|
(p9) br.call.sptk.many b0 = __libm_cos_large# // cos(large_X)
|
|
};;
|
|
|
|
{ .mfi
|
|
mov gp = GR_SAVE_GP
|
|
fma.d.s0 f8 = f8, f1, f0 // Round result to double
|
|
mov b0 = GR_SAVE_B0
|
|
}
|
|
// Force inexact set
|
|
{ .mfi
|
|
nop.m 999
|
|
fmpy.s0 sincos_save_tmp = sincos_save_tmp, sincos_save_tmp
|
|
nop.i 999
|
|
};;
|
|
|
|
{ .mib
|
|
nop.m 999
|
|
mov ar.pfs = GR_SAVE_PFS
|
|
br.ret.sptk b0 // Exit for large arguments routine call
|
|
};;
|
|
|
|
LOCAL_LIBM_END(__libm_callout_sincos)
|
|
|
|
.type __libm_sin_large#,@function
|
|
.global __libm_sin_large#
|
|
.type __libm_cos_large#,@function
|
|
.global __libm_cos_large#
|