mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-11 13:50:06 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
239 lines
6.8 KiB
C
239 lines
6.8 KiB
C
/* Implementation of gamma function according to ISO C.
|
|
Copyright (C) 1997-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <float.h>
|
|
#include <libm-alias-finite.h>
|
|
#include <mul_split.h>
|
|
|
|
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
|
|
approximation to gamma function. */
|
|
|
|
static const double gamma_coeff[] =
|
|
{
|
|
0x1.5555555555555p-4,
|
|
-0xb.60b60b60b60b8p-12,
|
|
0x3.4034034034034p-12,
|
|
-0x2.7027027027028p-12,
|
|
0x3.72a3c5631fe46p-12,
|
|
-0x7.daac36664f1f4p-12,
|
|
};
|
|
|
|
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
|
|
|
|
/* Return gamma (X), for positive X less than 184, in the form R *
|
|
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
|
|
avoid overflow or underflow in intermediate calculations. */
|
|
|
|
static double
|
|
gamma_positive (double x, int *exp2_adj)
|
|
{
|
|
int local_signgam;
|
|
if (x < 0.5)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_exp (__ieee754_lgamma_r (x + 1, &local_signgam)) / x;
|
|
}
|
|
else if (x <= 1.5)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_exp (__ieee754_lgamma_r (x, &local_signgam));
|
|
}
|
|
else if (x < 6.5)
|
|
{
|
|
/* Adjust into the range for using exp (lgamma). */
|
|
*exp2_adj = 0;
|
|
double n = ceil (x - 1.5);
|
|
double x_adj = x - n;
|
|
double eps;
|
|
double prod = __gamma_product (x_adj, 0, n, &eps);
|
|
return (__ieee754_exp (__ieee754_lgamma_r (x_adj, &local_signgam))
|
|
* prod * (1.0 + eps));
|
|
}
|
|
else
|
|
{
|
|
double eps = 0;
|
|
double x_eps = 0;
|
|
double x_adj = x;
|
|
double prod = 1;
|
|
if (x < 12.0)
|
|
{
|
|
/* Adjust into the range for applying Stirling's
|
|
approximation. */
|
|
double n = ceil (12.0 - x);
|
|
x_adj = math_narrow_eval (x + n);
|
|
x_eps = (x - (x_adj - n));
|
|
prod = __gamma_product (x_adj - n, x_eps, n, &eps);
|
|
}
|
|
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
|
|
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
|
|
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
|
|
factored out. */
|
|
double x_adj_int = round (x_adj);
|
|
double x_adj_frac = x_adj - x_adj_int;
|
|
int x_adj_log2;
|
|
double x_adj_mant = __frexp (x_adj, &x_adj_log2);
|
|
if (x_adj_mant < M_SQRT1_2)
|
|
{
|
|
x_adj_log2--;
|
|
x_adj_mant *= 2.0;
|
|
}
|
|
*exp2_adj = x_adj_log2 * (int) x_adj_int;
|
|
double h1, l1, h2, l2;
|
|
mul_split (&h1, &l1, __ieee754_pow (x_adj_mant, x_adj),
|
|
__ieee754_exp2 (x_adj_log2 * x_adj_frac));
|
|
mul_split (&h2, &l2, __ieee754_exp (-x_adj), sqrt (2 * M_PI / x_adj));
|
|
mul_expansion (&h1, &l1, h1, l1, h2, l2);
|
|
/* Divide by prod * (1 + eps). */
|
|
div_expansion (&h1, &l1, h1, l1, prod, prod * eps);
|
|
double exp_adj = x_eps * __ieee754_log (x_adj);
|
|
double bsum = gamma_coeff[NCOEFF - 1];
|
|
double x_adj2 = x_adj * x_adj;
|
|
for (size_t i = 1; i <= NCOEFF - 1; i++)
|
|
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
|
|
exp_adj += bsum / x_adj;
|
|
/* Now return (h1+l1) * exp(exp_adj), where exp_adj is small. */
|
|
l1 += h1 * __expm1 (exp_adj);
|
|
return h1 + l1;
|
|
}
|
|
}
|
|
|
|
double
|
|
__ieee754_gamma_r (double x, int *signgamp)
|
|
{
|
|
int32_t hx;
|
|
uint32_t lx;
|
|
double ret;
|
|
|
|
EXTRACT_WORDS (hx, lx, x);
|
|
|
|
if (__glibc_unlikely (((hx & 0x7fffffff) | lx) == 0))
|
|
{
|
|
/* Return value for x == 0 is Inf with divide by zero exception. */
|
|
*signgamp = 0;
|
|
return 1.0 / x;
|
|
}
|
|
if (__builtin_expect (hx < 0, 0)
|
|
&& (uint32_t) hx < 0xfff00000 && rint (x) == x)
|
|
{
|
|
/* Return value for integer x < 0 is NaN with invalid exception. */
|
|
*signgamp = 0;
|
|
return (x - x) / (x - x);
|
|
}
|
|
if (__glibc_unlikely ((unsigned int) hx == 0xfff00000 && lx == 0))
|
|
{
|
|
/* x == -Inf. According to ISO this is NaN. */
|
|
*signgamp = 0;
|
|
return x - x;
|
|
}
|
|
if (__glibc_unlikely ((hx & 0x7ff00000) == 0x7ff00000))
|
|
{
|
|
/* Positive infinity (return positive infinity) or NaN (return
|
|
NaN). */
|
|
*signgamp = 0;
|
|
return x + x;
|
|
}
|
|
|
|
if (x >= 172.0)
|
|
{
|
|
/* Overflow. */
|
|
*signgamp = 0;
|
|
ret = math_narrow_eval (DBL_MAX * DBL_MAX);
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
if (x > 0.0)
|
|
{
|
|
*signgamp = 0;
|
|
int exp2_adj;
|
|
double tret = gamma_positive (x, &exp2_adj);
|
|
ret = __scalbn (tret, exp2_adj);
|
|
}
|
|
else if (x >= -DBL_EPSILON / 4.0)
|
|
{
|
|
*signgamp = 0;
|
|
ret = 1.0 / x;
|
|
}
|
|
else
|
|
{
|
|
double tx = trunc (x);
|
|
*signgamp = (tx == 2.0 * trunc (tx / 2.0)) ? -1 : 1;
|
|
if (x <= -184.0)
|
|
/* Underflow. */
|
|
ret = DBL_MIN * DBL_MIN;
|
|
else
|
|
{
|
|
double frac = tx - x;
|
|
if (frac > 0.5)
|
|
frac = 1.0 - frac;
|
|
double sinpix = (frac <= 0.25
|
|
? __sin (M_PI * frac)
|
|
: __cos (M_PI * (0.5 - frac)));
|
|
int exp2_adj;
|
|
double h1, l1, h2, l2;
|
|
h2 = gamma_positive (-x, &exp2_adj);
|
|
mul_split (&h1, &l1, sinpix, h2);
|
|
/* sinpix*gamma_positive(.) = h1 + l1 */
|
|
mul_split (&h2, &l2, h1, x);
|
|
/* h1*x = h2 + l2 */
|
|
/* (h1 + l1) * x = h1*x + l1*x = h2 + l2 + l1*x */
|
|
l2 += l1 * x;
|
|
/* x*sinpix*gamma_positive(.) ~ h2 + l2 */
|
|
h1 = 0x3.243f6a8885a3p+0; /* binary64 approximation of Pi */
|
|
l1 = 0x8.d313198a2e038p-56; /* |h1+l1-Pi| < 3e-33 */
|
|
/* Now we divide h1 + l1 by h2 + l2. */
|
|
div_expansion (&h1, &l1, h1, l1, h2, l2);
|
|
ret = __scalbn (-h1, -exp2_adj);
|
|
math_check_force_underflow_nonneg (ret);
|
|
}
|
|
}
|
|
ret = math_narrow_eval (ret);
|
|
}
|
|
if (isinf (ret) && x != 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysign (DBL_MAX, ret) * DBL_MAX);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysign (DBL_MAX, ret) * DBL_MAX);
|
|
return ret;
|
|
}
|
|
else if (ret == 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysign (DBL_MIN, ret) * DBL_MIN);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysign (DBL_MIN, ret) * DBL_MIN);
|
|
return ret;
|
|
}
|
|
else
|
|
return ret;
|
|
}
|
|
libm_alias_finite (__ieee754_gamma_r, __gamma_r)
|