mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-01 09:20:19 +00:00
5c68d40169
2006-03-07 Jakub Jelinek <jakub@redhat.com> [BZ #2423] * math/libm-test.inc [TEST_LDOUBLE] (ceil_test, floor_test, rint_test, round_test, trunc_test): Only run some of the new tests if LDBL_MANT_DIG > 100. 2006-03-03 Steven Munroe <sjmunroe@us.ibm.com> Alan Modra <amodra@bigpond.net.au> * sysdeps/powerpc/fpu/fenv_libc.h (__fegetround, __fesetround): Define inline implementations. * sysdeps/powerpc/fpu/fegetround.c: Use __fegetround. * sysdeps/powerpc/fpu/fesetround.c: Use __fesetround. * sysdeps/powerpc/fpu/math_ldbl.h: New file. [BZ #2423] * math/libm-test.inc [TEST_LDOUBLE] (ceil_test, floor_test, rint_test, round_test, trunc_test): Add new tests. * sysdeps/ieee754/ldbl-128ibm/math_ldbl.h (EXTRACT_IBM_EXTENDED_MANTISSA, INSERT_IBM_EXTENDED_MANTISSA): Removed, replaced with ... (ldbl_extract_mantissa, ldbl_insert_mantissa, ldbl_pack, ldbl_unpack, ldbl_canonicalise, ldbl_nearbyint): New functions. * sysdeps/ieee754/ldbl-128ibm/e_fmodl.c (__ieee754_fmodl): Replace EXTRACT_IBM_EXTENDED_MANTISSA and INSERT_IBM_EXTENDED_MANTISSA with ldbl_extract_mantissa and ldbl_insert_mantissa. * sysdeps/ieee754/ldbl-128ibm/e_rem_pio2l.c (__ieee754_rem_pio2l): Replace EXTRACT_IBM_EXTENDED_MANTISSA with ldbl_extract_mantissa. (ldbl_extract_mantissa, ldbl_insert_mantissa): New inline functions. * sysdeps/ieee754/ldbl-128ibm/s_ceill.c (__ceill): Handle rounding that spans doubles in IBM long double format. * sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_rintl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_roundl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_truncl.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/s_rintl.S: File removed.
182 lines
4.9 KiB
C
182 lines
4.9 KiB
C
#ifndef _MATH_PRIVATE_H_
|
|
#error "Never use <math_ldbl.h> directly; include <math_private.h> instead."
|
|
#endif
|
|
|
|
#include <sysdeps/ieee754/ldbl-128/math_ldbl.h>
|
|
#include <ieee754.h>
|
|
|
|
static inline void
|
|
ldbl_extract_mantissa (int64_t *hi64, u_int64_t *lo64, int *exp, long double x)
|
|
{
|
|
/* We have 105 bits of mantissa plus one implicit digit. Since
|
|
106 bits are representable we use the first implicit digit for
|
|
the number before the decimal point and the second implicit bit
|
|
as bit 53 of the mantissa. */
|
|
unsigned long long hi, lo;
|
|
int ediff;
|
|
union ibm_extended_long_double eldbl;
|
|
eldbl.d = x;
|
|
*exp = eldbl.ieee.exponent - IBM_EXTENDED_LONG_DOUBLE_BIAS;
|
|
|
|
lo = ((long long)eldbl.ieee.mantissa2 << 32) | eldbl.ieee.mantissa3;
|
|
hi = ((long long)eldbl.ieee.mantissa0 << 32) | eldbl.ieee.mantissa1;
|
|
/* If the lower double is not a denomal or zero then set the hidden
|
|
53rd bit. */
|
|
if (eldbl.ieee.exponent2 > 0x001)
|
|
{
|
|
lo |= (1ULL << 52);
|
|
lo = lo << 7; /* pre-shift lo to match ieee854. */
|
|
/* The lower double is normalized separately from the upper. We
|
|
may need to adjust the lower manitissa to reflect this. */
|
|
ediff = eldbl.ieee.exponent - eldbl.ieee.exponent2;
|
|
if (ediff > 53)
|
|
lo = lo >> (ediff-53);
|
|
}
|
|
hi |= (1ULL << 52);
|
|
|
|
if ((eldbl.ieee.negative != eldbl.ieee.negative2)
|
|
&& ((eldbl.ieee.exponent2 != 0) && (lo != 0LL)))
|
|
{
|
|
hi--;
|
|
lo = (1ULL << 60) - lo;
|
|
if (hi < (1ULL << 52))
|
|
{
|
|
/* we have a borrow from the hidden bit, so shift left 1. */
|
|
hi = (hi << 1) | (lo >> 59);
|
|
lo = 0xfffffffffffffffLL & (lo << 1);
|
|
*exp = *exp - 1;
|
|
}
|
|
}
|
|
*lo64 = (hi << 60) | lo;
|
|
*hi64 = hi >> 4;
|
|
}
|
|
|
|
static inline long double
|
|
ldbl_insert_mantissa (int sign, int exp, int64_t hi64, u_int64_t lo64)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
unsigned long hidden2, lzcount;
|
|
unsigned long long hi, lo;
|
|
|
|
u.ieee.negative = sign;
|
|
u.ieee.negative2 = sign;
|
|
u.ieee.exponent = exp + IBM_EXTENDED_LONG_DOUBLE_BIAS;
|
|
u.ieee.exponent2 = exp-53 + IBM_EXTENDED_LONG_DOUBLE_BIAS;
|
|
/* Expect 113 bits (112 bits + hidden) right justified in two longs.
|
|
The low order 53 bits (52 + hidden) go into the lower double */
|
|
lo = (lo64 >> 7)& ((1ULL << 53) - 1);
|
|
hidden2 = (lo64 >> 59) & 1ULL;
|
|
/* The high order 53 bits (52 + hidden) go into the upper double */
|
|
hi = (lo64 >> 60) & ((1ULL << 11) - 1);
|
|
hi |= (hi64 << 4);
|
|
|
|
if (lo != 0LL)
|
|
{
|
|
/* hidden2 bit of low double controls rounding of the high double.
|
|
If hidden2 is '1' then round up hi and adjust lo (2nd mantissa)
|
|
plus change the sign of the low double to compensate. */
|
|
if (hidden2)
|
|
{
|
|
hi++;
|
|
u.ieee.negative2 = !sign;
|
|
lo = (1ULL << 53) - lo;
|
|
}
|
|
/* The hidden bit of the lo mantissa is zero so we need to
|
|
normalize the it for the low double. Shift it left until the
|
|
hidden bit is '1' then adjust the 2nd exponent accordingly. */
|
|
|
|
if (sizeof (lo) == sizeof (long))
|
|
lzcount = __builtin_clzl (lo);
|
|
else if ((lo >> 32) != 0)
|
|
lzcount = __builtin_clzl ((long) (lo >> 32));
|
|
else
|
|
lzcount = __builtin_clzl ((long) lo) + 32;
|
|
lzcount = lzcount - 11;
|
|
if (lzcount > 0)
|
|
{
|
|
int expnt2 = u.ieee.exponent2 - lzcount;
|
|
if (expnt2 >= 1)
|
|
{
|
|
/* Not denormal. Normalize and set low exponent. */
|
|
lo = lo << lzcount;
|
|
u.ieee.exponent2 = expnt2;
|
|
}
|
|
else
|
|
{
|
|
/* Is denormal. */
|
|
lo = lo << (lzcount + expnt2);
|
|
u.ieee.exponent2 = 0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
u.ieee.negative2 = 0;
|
|
u.ieee.exponent2 = 0;
|
|
}
|
|
|
|
u.ieee.mantissa3 = lo & ((1ULL << 32) - 1);
|
|
u.ieee.mantissa2 = (lo >> 32) & ((1ULL << 20) - 1);
|
|
u.ieee.mantissa1 = hi & ((1ULL << 32) - 1);
|
|
u.ieee.mantissa0 = (hi >> 32) & ((1ULL << 20) - 1);
|
|
return u.d;
|
|
}
|
|
|
|
/* Handy utility functions to pack/unpack/cononicalize and find the nearbyint
|
|
of long double implemented as double double. */
|
|
static inline long double
|
|
ldbl_pack (double a, double aa)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
u.dd[0] = a;
|
|
u.dd[1] = aa;
|
|
return u.d;
|
|
}
|
|
|
|
static inline void
|
|
ldbl_unpack (long double l, double *a, double *aa)
|
|
{
|
|
union ibm_extended_long_double u;
|
|
u.d = l;
|
|
*a = u.dd[0];
|
|
*aa = u.dd[1];
|
|
}
|
|
|
|
|
|
/* Convert a finite long double to canonical form.
|
|
Does not handle +/-Inf properly. */
|
|
static inline void
|
|
ldbl_canonicalize (double *a, double *aa)
|
|
{
|
|
double xh, xl;
|
|
|
|
xh = *a + *aa;
|
|
xl = (*a - xh) + *aa;
|
|
*a = xh;
|
|
*aa = xl;
|
|
}
|
|
|
|
/* Simple inline nearbyint (double) function .
|
|
Only works in the default rounding mode
|
|
but is useful in long double rounding functions. */
|
|
static inline double
|
|
ldbl_nearbyint (double a)
|
|
{
|
|
double two52 = 0x10000000000000LL;
|
|
|
|
if (__builtin_expect ((__builtin_fabs (a) < two52), 1))
|
|
{
|
|
if (__builtin_expect ((a > 0.0), 1))
|
|
{
|
|
a += two52;
|
|
a -= two52;
|
|
}
|
|
else if (__builtin_expect ((a < 0.0), 1))
|
|
{
|
|
a = two52 - a;
|
|
a = -(a - two52);
|
|
}
|
|
}
|
|
return a;
|
|
}
|