glibc/sysdeps/ia64/fpu/s_tanhf.S
Siddhesh Poyarekar 30891f35fa Remove "Contributed by" lines
We stopped adding "Contributed by" or similar lines in sources in 2012
in favour of git logs and keeping the Contributors section of the
glibc manual up to date.  Removing these lines makes the license
header a bit more consistent across files and also removes the
possibility of error in attribution when license blocks or files are
copied across since the contributed-by lines don't actually reflect
reality in those cases.

Move all "Contributed by" and similar lines (Written by, Test by,
etc.) into a new file CONTRIBUTED-BY to retain record of these
contributions.  These contributors are also mentioned in
manual/contrib.texi, so we just maintain this additional record as a
courtesy to the earlier developers.

The following scripts were used to filter a list of files to edit in
place and to clean up the CONTRIBUTED-BY file respectively.  These
were not added to the glibc sources because they're not expected to be
of any use in future given that this is a one time task:

https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc
https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02

Reviewed-by: Carlos O'Donell <carlos@redhat.com>
2021-09-03 22:06:44 +05:30

582 lines
16 KiB
ArmAsm

.file "tanhf.s"
// Copyright (c) 2001 - 2005, Intel Corporation
// All rights reserved.
//
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote
// products derived from this software without specific prior written
// permission.
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL OR ITS
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
// OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Intel Corporation is the author of this code, and requests that all
// problem reports or change requests be submitted to it directly at
// http://www.intel.com/software/products/opensource/libraries/num.htm.
//
// History
//==============================================================
// 05/30/01 Initial version
// 05/20/02 Cleaned up namespace and sf0 syntax
// 02/10/03 Reordered header: .section, .global, .proc, .align
// 03/31/05 Reformatted delimiters between data tables
//
// API
//==============================================================
// float tanhf(float)
//
// Overview of operation
//==============================================================
// Background
//
//
// There are 9 paths:
// 1. x = +/-0.0
// Return tanhf(x) = +/-0.0
//
// 2. 0.0 < |x| < 0.3125
// Return tanhf(x) = x + x^3*Pol3(x^2),
// where Pol3(x^2) = C3*x^6 + C2*x^4 + C1*x^2 + C0
//
// 3. 0.3125 <= |x| < 8.0
// Return tanhf(x) = sign(x)*PolD(x)*PolC(|x|) + sign(x)*PolA(|x|),
// where sign(x)*PolD(x) = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4),
// PolC(|x|) = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0,
// PolA(|x|) = A3|x|^3 + A2*x^2 + A1*|x| + A0
//
// Actually range 0.3125<=|x|< 8.0 is split to 5 subranges.
// For each subrange there is particular set of coefficients.
// Below is the list of subranges:
// 3.1 0.3125 <= |x| < 0.5
// 3.2 0.5 <= |x| < 1.0
// 3.3 1.0 <= |x| < 2.0
// 3.4 2.0 <= |x| < 4.0
// 3.5 4.0 <= |x| < 8.0
//
// 4. 8.0 <= |x| < 9.125
// Return tanhf(x) = sign(x)*(A3|x|^3 + A2*x^2 + A1*|x| + A0)
//
// 5. 9.125 <= |x| < +INF
// Return tanhf(x) = sign(x)*(1.0d - 2^(-52))
//
// 6. |x| = INF
// Return tanhf(x) = sign(x) * 1.0
//
// 7. x = [S,Q]NaN
// Return tanhf(x) = QNaN
//
// 8. x is positive denormal
// Return tanhf(x) = x - x^2
//
// 9. x is negative denormal
// Return tanhf(x) = x + x^2
//
// Registers used
//==============================================================
// Floating Point registers used:
// f8, input
// f32 -> f59
// General registers used:
// r32 -> r46, r2, r3
// Predicate registers used:
// p0, p6 -> p15
// p6 to filter out case when x = [Q,S]NaN or +/-0
// p7 to filter out case when x = denormal
// p8 set if |x| >= 0.3125, used also to process denormal input
// p9 to filter out case when |x| = inf
// p10 to filter out case when |x| < 0.3125
// p11 to filter out case when 0.3125 <= |x| < 9.125
// p12 to filter out case when |x| >= 9.125
// p13 to filter out case when 8.0 <= |x| < 9.125
// p14 set to 1 for positive x
// p15 set to 1 for negative x
// Assembly macros
//==============================================================
rDataPtr = r2
rDataPtr1 = r3
rBias = r33
rCoeffAddr3 = r34
rNearSaturation = r35
rCoeffAddr1 = r36
rCoeffAddr2 = r37
rOffset2 = r38
rBias2 = r39
rMask = r40
rArg = r41
rBound = r42
rSignBit = r43
rAbsArg = r44
rDataPtr2 = r45
rSaturation = r46
//==============================================================
fA0 = f32
fA1 = f33
fA2 = f34
fA3 = f35
fC0 = f36
fC1 = f37
fC2 = f38
fC3 = f39
fD0 = f40
fD1 = f41
fD2 = f42
fB0 = f43
fArgSqr = f44
fAbsArg = f45
fSignumX = f46
fArg4 = f47
fArg4Sgn = f48
fArg3 = f49
fArg3Sgn = f50
fArg7Sgn = f51
fArg6Sgn = f52
fPolC = f53
fPolCTmp = f54
fPolA = f55
fPolATmp = f56
fPolD = f57
fPolDTmp = f58
fArgSqrSgn = f59
// Data tables
//==============================================================
RODATA
.align 16
LOCAL_OBJECT_START(tanhf_data)
// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5
data8 0x3F9BEEDFDD177D7B // C0
data8 0x3F970D10C7F32458 // C1
data8 0x3F766D6B051F3A38 // C2
data8 0xBF732F2001B23402 // C3
data8 0xBF854BE1CE1ED499 // D0
data8 0x4013C944F3999A16 // D1
data8 0xC01106C6975222C0 // D2
data8 0x3F783D5ACCF9EBE8 // B0
// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
data8 0xBF5D631440786869 // C0
data8 0xBF575D79A0D52069 // C1
data8 0xBF7E2237B7EFC705 // C2
data8 0x3F6A7ACBC273041F // C3
data8 0xC040E32EA52D91EB // D0
data8 0x403D19463E5DB4D7 // D1
data8 0xC02216F61F759F39 // D2
data8 0xBF55B4EA0B844BE7 // B0
// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
data8 0x3F8637DBE5B3E690 // C0
data8 0xBF7F7FEC158C07F5 // C1
data8 0x3F711C586706838A // C2
data8 0xBF50EF7EF605554E // C3
data8 0xC054D45448354E25 // D0
data8 0x404ADFEEA282E730 // D1
data8 0xC028AEE456D59549 // D2
data8 0x3F25232D1BED59A8 // B0
// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0
data8 0xBF52602285F2D06C // C0
data8 0x3F2E57C298FFE1E0 // C1
data8 0xBF15ED575DB3C811 // C2
data8 0x3EE428878A08525C // C3
data8 0xC0895A26849039C1 // D0
data8 0x406E3C60BBFBB575 // D1
data8 0xC03A06F62867C75A // D2
data8 0xBEB114C70F1C723E // B0
// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0
data8 0x3EF4B22BD17039A3 // C0
data8 0xBEB704ADC040C57F // C1
data8 0x3E937A98288AFE1A // C2
data8 0xBE4F33B2C9FFE7E7 // C3
data8 0xC0BE48CFADE2431E // D0
data8 0x4090E74249760FDD // D1
data8 0xC04B6F537FCF2F1E // D2
data8 0x3E0DCD879C91ADEA // B0
// Polynomial coefficients for the tanh(x), -0.3125 < x < 0.3125
data8 0xBFD555551E8245B7 // A0
data8 0x3FC110E63F52E689 // A1
data8 0xBFAB8CD6A5B7BAFA // A2
data8 0x3F945D467FCEB553 // A3
// Polynomial coefficients for the tanh(x), 0.3125 <= |x| < 0.5
data8 0xBE3DCC92FCAECBB6 // A0
data8 0x3FF0000043B7D267 // A1
data8 0xBED18BF28ACFC4B1 // A2
data8 0xBFD554A56F82837E // A3
// Polynomial coefficients for the tanh(x), 0.5 <= |x| < 1.0
data8 0x3EFD6054758539F9 // A0
data8 0x3FEFFBFC77198EBE // A1
data8 0x3F700327CA98D237 // A2
data8 0xBFD68955F5BB2FA1 // A3
// Polynomial coefficients for the tanh(x), 1.0 <= |x| < 2.0
data8 0xBF71A53F229DF01B // A0
data8 0x3FF0AECFD730DE50 // A1
data8 0xBFC882F88E5DF3BA // A2
data8 0x3FC6EDF212CA2A8D // A3
// Polynomial coefficients for the tanh(x), 2.0 <= |x| < 4.0
data8 0xBFAF0B712E9EDA47 // A0
data8 0x3FF1C208080BEA64 // A1
data8 0x3FC3D29B20C8946E // A2
data8 0xBFF04514ED900A6A // A3
// Polynomial coefficients for the tanh(x), 4.0 <= |x| < 8.0
data8 0xBFB1DEA49A831CBC // A0
data8 0x3FFA729FC7085674 // A1
data8 0xBFF2F44D923A8FA4 // A2
data8 0x3FE092FC5712227E // A3
// Polynomial coefficients for the tanh(x), 8.0 <= |x| <= 9.125
data8 0x3FEFFF5769EE3041 // A0
data8 0x3EFBBF148D850891 // A1
data8 0xBEC86BCEF0F5C2FE // A2
data8 0x3E7CBA4F3A885A5C // A3
//
data8 0x3FEFFFFFFFFFFFFF // 1.0 - epsilon
LOCAL_OBJECT_END(tanhf_data)
.section .text
GLOBAL_LIBM_ENTRY(tanhf)
{ .mfi
alloc r32 = ar.pfs, 1, 14, 0, 0
fmerge.s fAbsArg = f1, f8 // |x|
addl rMask = 0x806, r0
}
{ .mfi
addl rDataPtr = @ltoff(tanhf_data), gp
fma.s1 fArgSqr = f8, f8, f0 // x^2
adds rSignBit = 0x1, r0
}
;;
{ .mfi
getf.s rArg = f8 // x in GR
fclass.m p7,p0 = f8, 0x0b // is x denormal ?
// sign bit and 2 most bits in significand
shl rMask = rMask, 20
}
{ .mfi
ld8 rDataPtr = [rDataPtr]
nop.f 0
adds rBias2 = 0x1F4, r0
}
;;
{ .mfi
adds rNearSaturation = 0x14, r0
fmerge.s fSignumX = f8, f1 // signum(x)
shl rSignBit = rSignBit, 31 // mask for sign bit
}
{ .mfi
adds rBound = 0x3EA, r0
nop.f 0
addl rSaturation = 0x4112, r0
}
;;
{ .mfi
andcm rOffset2 = rArg, rMask
fclass.m p6,p0 = f8, 0xc7 // is x [S,Q]NaN or +/-0 ?
shl rBound = rBound, 20 // 1.0f in GR
}
{ .mfb
andcm rAbsArg = rArg, rSignBit // |x| in GR
nop.f 0
(p7) br.cond.spnt tanhf_denormal // branch out if x is denormal
}
;;
{ .mfi
adds rCoeffAddr2 = 352, rDataPtr
fclass.m p9,p0 = f8, 0x23 // is x +/- inf?
shr rOffset2 = rOffset2, 21
}
{ .mfi
cmp.lt p10, p8 = rAbsArg, rBound // |x| < 0.3125?
nop.f 0
adds rCoeffAddr3 = 16, rDataPtr
}
;;
{ .mfi
(p8) sub rBias = rOffset2, rBias2
fma.s1 fArg4 = fArgSqr, fArgSqr, f0 // x^4
shl rSaturation = rSaturation, 16
}
{ .mfb
(p10) adds rBias = 0x14, r0
(p6) fma.s.s0 f8 = f8,f1,f8 // NaN or +/-0
(p6) br.ret.spnt b0 // exit for x = NaN or +/-0
}
;;
{ .mfi
shladd rCoeffAddr1 = rBias, 4, rDataPtr
fma.s1 fArg3Sgn = fArgSqr, f8, f0 // sign(x)*|x|^3
// is |x| < 9.125?
cmp.lt p11, p12 = rAbsArg, rSaturation
}
{ .mfi
shladd rCoeffAddr3 = rBias, 4, rCoeffAddr3
fma.s1 fArg3 = fArgSqr, fAbsArg, f0 // |x|^3
shladd rCoeffAddr2 = rBias, 3, rCoeffAddr2
}
;;
{ .mfi
(p11) ldfpd fC0, fC1 = [rCoeffAddr1]
(p9) fmerge.s f8 = f8,f1 // +/- inf
(p12) adds rDataPtr = 544, rDataPtr
}
{ .mfb
(p11) ldfpd fC2, fC3 = [rCoeffAddr3], 16
nop.f 0
(p9) br.ret.spnt b0 // exit for x = +/- inf
}
;;
{ .mfi
(p11) ldfpd fA0, fA1 = [rCoeffAddr2], 16
nop.f 0
(p8) cmp.eq.unc p13, p0 = rBias, rNearSaturation
}
{ .mfi
add rCoeffAddr1 = 48, rCoeffAddr1
nop.f 0
nop.i 0
}
;;
{ .mfi
(p11) ldfpd fD0, fD1 = [rCoeffAddr3]
nop.f 0
nop.i 0
}
{ .mfb
(p11) ldfpd fD2, fB0 = [rCoeffAddr1]
// sign(x)*|x|^2
fma.s1 fArgSqrSgn = fArgSqr, fSignumX, f0
(p10) br.cond.spnt tanhf_near_zero
}
;;
{ .mfi
(p11) ldfpd fA2, fA3 = [rCoeffAddr2], 16
fcmp.lt.s1 p15, p14 = f8,f0
nop.i 0
}
{ .mfb
(p12) ldfd fA0 = [rDataPtr]
fma.s1 fArg4Sgn = fArg4, fSignumX, f0 // sign(x)*|x|^4
(p12) br.cond.spnt tanhf_saturation
}
;;
{ .mfi
nop.m 0
fma.s1 fArg7Sgn = fArg4, fArg3Sgn, f0 // sign(x)*|x|^7
nop.i 0
}
{ .mfb
nop.m 0
fma.s1 fArg6Sgn = fArg3, fArg3Sgn, f0 // sign(x)*|x|^6
(p13) br.cond.spnt tanhf_close_to_saturation
}
;;
{ .mfi
nop.m 0
fma.s1 fPolC = fC3, fAbsArg, fC2 // C3*|x| + C2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolCTmp = fC1, fAbsArg, fC0 // C1*|x| + C0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolA = fA1, fAbsArg, fA0 // A1*|x| + A0
nop.i 0
}
;;
{ .mfi
nop.m 0
fma.s1 fPolD = fD1, fAbsArg, fD0 // D1*|x| + D0
nop.i 0
}
{ .mfi
nop.m 0
// sign(x)*(|x|^7 + D2*x^6)
fma.s1 fPolDTmp = fArg6Sgn, fD2, fArg7Sgn
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolATmp = fA3, fAbsArg, fA2 // A3*|x| + A2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fB0 = fB0, fArg4, f0 // B0*x^4
nop.i 0
};;
{ .mfi
nop.m 0
// C3*|x|^3 + C2*x^2 + C1*|x| + C0
fma.s1 fPolC = fPolC, fArgSqr, fPolCTmp
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolD = sign(x)*(|x|^7 + D2*x^6 + D1*|x|^5 + D0*x^4)
fma.d.s1 fPolD = fPolD, fArg4Sgn, fPolDTmp
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolA = A3|x|^3 + A2*x^2 + A1*|x| + A0
fma.d.s1 fPolA = fPolATmp, fArgSqr, fPolA
nop.i 0
}
;;
{ .mfi
nop.m 0
// PolC = B0*x^4 + C3*|x|^3 + C2*|x|^2 + C1*|x| + C0
fma.d.s1 fPolC = fPolC, f1, fB0
nop.i 0
}
;;
{ .mfi
nop.m 0
(p14) fma.s.s0 f8 = fPolC, fPolD, fPolA // for positive x
nop.i 0
}
{ .mfb
nop.m 0
(p15) fms.s.s0 f8 = fPolC, fPolD, fPolA // for negative x
br.ret.sptk b0 // Exit for 0.3125 <=|x|< 8.0
};;
// Here if |x| < 0.3125
tanhf_near_zero:
{ .mfi
nop.m 0
fma.s1 fPolC = fC3, fArgSqr, fC2 // C3*x^2 + C2
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolCTmp = fC1, fArgSqr, fC0 // C1*x^2 + C0
nop.i 0
};;
{ .mfi
nop.m 0
fma.s1 fPolC = fPolC, fArg4, fPolCTmp // C3*x^6 + C2*x^4 + C1*x^2 + C0
nop.i 0
};;
{ .mfb
nop.m 0
// x + x^3*(C3*x^6 + C2*x^4 + C1*x^2 + C0)
fma.s.s0 f8 = fPolC, fArg3Sgn, f8
br.ret.sptk b0 // Exit for |x| < 0.3125
};;
// Here if 9.125 <= |x| < +inf
tanhf_saturation:
{ .mfb
nop.m 0
fma.s.s0 f8 = fA0, fSignumX, f0 // sign(x)*(1.0d - 2^(-52))
// Exit for 9.125 <= |x| < +inf
br.ret.sptk b0 // Exit for 9.125 <=|x|< +inf
}
;;
// Here if 8.0 <= |x| < 9.125
tanhf_close_to_saturation:
{ .mfi
nop.m 0
fma.s1 fPolATmp = fA1, fAbsArg, fA0 // A1*|x| + A0
nop.i 0
}
{ .mfi
nop.m 0
fma.s1 fPolA = fA3, fAbsArg, fA2 // A3*|x| + A2
nop.i 0
}
;;
.pred.rel "mutex", p14, p15
{ .mfi
nop.m 0
// for positive x
(p14) fma.s.s0 f8 = fPolA, fArgSqr, fPolATmp
nop.i 0
}
{ .mfb
nop.m 0
// for negative x
(p15) fms.s.s0 f8 = fPolA, fArgSqrSgn, fPolATmp
br.ret.sptk b0 // Exit for 8.0 <=|x|< 9.125
};;
// Here if x is single precision denormal
tanhf_denormal:
{ .mfi
nop.m 0
fclass.m p7,p8 = f8, 0x0a // is x -denormal ?
nop.i 0
}
;;
{ .mfi
nop.m 0
(p7) fma.s.s0 f8 = f8,f8,f8 // -denormal
nop.i 0
}
{ .mfb
nop.m 0
(p8) fnma.s.s0 f8 = f8,f8,f8 // +denormal
br.ret.sptk b0 // Exit for denormal
}
;;
GLOBAL_LIBM_END(tanhf)
libm_alias_float_other (tanh, tanh)