mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-23 11:20:07 +00:00
22c8319345
those which are used. * elf/dl-addr.c: Likewise. * elf/dl-caller.c: Likewise. * elf/dl-fini.c: Likewise. * elf/dl-iteratephdr.c: Likewise. * elf/dl-libc.c: Likewise. * elf/dl-load.c: Likewise. * elf/dl-support.c: Likewise. * elf/dl-sym.c: Likewise. * elf/rtld.c: Likewise. * sysdeps/generic/ldsodefs.h: Likewise.
288 lines
8.2 KiB
C
288 lines
8.2 KiB
C
/* Call the termination functions of loaded shared objects.
|
|
Copyright (C) 1995,96,1998-2002,2004-2005,2009 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
#include <alloca.h>
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
#include <ldsodefs.h>
|
|
|
|
|
|
/* Type of the constructor functions. */
|
|
typedef void (*fini_t) (void);
|
|
|
|
|
|
void
|
|
internal_function
|
|
_dl_sort_fini (struct link_map *l, struct link_map **maps, size_t nmaps,
|
|
char *used, Lmid_t ns)
|
|
{
|
|
if (ns == LM_ID_BASE)
|
|
/* The main executable always comes first. */
|
|
l = l->l_next;
|
|
|
|
for (; l != NULL; l = l->l_next)
|
|
/* Do not handle ld.so in secondary namespaces and object which
|
|
are not removed. */
|
|
if (l == l->l_real && l->l_idx != -1)
|
|
{
|
|
/* Find the place in the 'maps' array. */
|
|
unsigned int j;
|
|
for (j = ns == LM_ID_BASE ? 1 : 0; maps[j] != l; ++j)
|
|
assert (j < nmaps);
|
|
|
|
/* Find all object for which the current one is a dependency
|
|
and move the found object (if necessary) in front. */
|
|
for (unsigned int k = j + 1; k < nmaps; ++k)
|
|
{
|
|
struct link_map **runp = maps[k]->l_initfini;
|
|
if (runp != NULL)
|
|
{
|
|
while (*runp != NULL)
|
|
if (*runp == l)
|
|
{
|
|
struct link_map *here = maps[k];
|
|
|
|
/* Move it now. */
|
|
memmove (&maps[j] + 1,
|
|
&maps[j], (k - j) * sizeof (struct link_map *));
|
|
maps[j] = here;
|
|
|
|
if (used != NULL)
|
|
{
|
|
char here_used = used[k];
|
|
|
|
memmove (&used[j] + 1,
|
|
&used[j], (k - j) * sizeof (char));
|
|
used[j] = here_used;
|
|
}
|
|
|
|
++j;
|
|
|
|
break;
|
|
}
|
|
else
|
|
++runp;
|
|
}
|
|
|
|
if (__builtin_expect (maps[k]->l_reldeps != NULL, 0))
|
|
{
|
|
unsigned int m = maps[k]->l_reldeps->act;
|
|
struct link_map **relmaps = &maps[k]->l_reldeps->list[0];
|
|
|
|
while (m-- > 0)
|
|
{
|
|
if (relmaps[m] == l)
|
|
{
|
|
struct link_map *here = maps[k];
|
|
|
|
/* Move it now. */
|
|
memmove (&maps[j] + 1,
|
|
&maps[j],
|
|
(k - j) * sizeof (struct link_map *));
|
|
maps[j] = here;
|
|
|
|
if (used != NULL)
|
|
{
|
|
char here_used = used[k];
|
|
|
|
memmove (&used[j] + 1,
|
|
&used[j], (k - j) * sizeof (char));
|
|
used[j] = here_used;
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
internal_function
|
|
_dl_fini (void)
|
|
{
|
|
/* Lots of fun ahead. We have to call the destructors for all still
|
|
loaded objects, in all namespaces. The problem is that the ELF
|
|
specification now demands that dependencies between the modules
|
|
are taken into account. I.e., the destructor for a module is
|
|
called before the ones for any of its dependencies.
|
|
|
|
To make things more complicated, we cannot simply use the reverse
|
|
order of the constructors. Since the user might have loaded objects
|
|
using `dlopen' there are possibly several other modules with its
|
|
dependencies to be taken into account. Therefore we have to start
|
|
determining the order of the modules once again from the beginning. */
|
|
struct link_map **maps = NULL;
|
|
size_t maps_size = 0;
|
|
|
|
/* We run the destructors of the main namespaces last. As for the
|
|
other namespaces, we pick run the destructors in them in reverse
|
|
order of the namespace ID. */
|
|
#ifdef SHARED
|
|
int do_audit = 0;
|
|
again:
|
|
#endif
|
|
for (Lmid_t ns = GL(dl_nns) - 1; ns >= 0; --ns)
|
|
{
|
|
/* Protect against concurrent loads and unloads. */
|
|
__rtld_lock_lock_recursive (GL(dl_load_lock));
|
|
|
|
unsigned int nmaps = 0;
|
|
unsigned int nloaded = GL(dl_ns)[ns]._ns_nloaded;
|
|
/* No need to do anything for empty namespaces or those used for
|
|
auditing DSOs. */
|
|
if (nloaded == 0
|
|
#ifdef SHARED
|
|
|| GL(dl_ns)[ns]._ns_loaded->l_auditing != do_audit
|
|
#endif
|
|
)
|
|
goto out;
|
|
|
|
/* XXX Could it be (in static binaries) that there is no object
|
|
loaded? */
|
|
assert (ns != LM_ID_BASE || nloaded > 0);
|
|
|
|
/* Now we can allocate an array to hold all the pointers and copy
|
|
the pointers in. */
|
|
if (maps_size < nloaded * sizeof (struct link_map *))
|
|
{
|
|
if (maps_size == 0)
|
|
{
|
|
maps_size = nloaded * sizeof (struct link_map *);
|
|
maps = (struct link_map **) alloca (maps_size);
|
|
}
|
|
else
|
|
maps = (struct link_map **)
|
|
extend_alloca (maps, maps_size,
|
|
nloaded * sizeof (struct link_map *));
|
|
}
|
|
|
|
unsigned int i;
|
|
struct link_map *l;
|
|
assert (nloaded != 0 || GL(dl_ns)[ns]._ns_loaded == NULL);
|
|
for (l = GL(dl_ns)[ns]._ns_loaded, i = 0; l != NULL; l = l->l_next)
|
|
/* Do not handle ld.so in secondary namespaces. */
|
|
if (l == l->l_real)
|
|
{
|
|
assert (i < nloaded);
|
|
|
|
maps[i] = l;
|
|
l->l_idx = i;
|
|
++i;
|
|
|
|
/* Bump l_direct_opencount of all objects so that they are
|
|
not dlclose()ed from underneath us. */
|
|
++l->l_direct_opencount;
|
|
}
|
|
assert (ns != LM_ID_BASE || i == nloaded);
|
|
assert (ns == LM_ID_BASE || i == nloaded || i == nloaded - 1);
|
|
nmaps = i;
|
|
|
|
if (nmaps != 0)
|
|
/* Now we have to do the sorting. */
|
|
_dl_sort_fini (GL(dl_ns)[ns]._ns_loaded, maps, nmaps, NULL, ns);
|
|
|
|
/* We do not rely on the linked list of loaded object anymore from
|
|
this point on. We have our own list here (maps). The various
|
|
members of this list cannot vanish since the open count is too
|
|
high and will be decremented in this loop. So we release the
|
|
lock so that some code which might be called from a destructor
|
|
can directly or indirectly access the lock. */
|
|
out:
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
|
|
/* 'maps' now contains the objects in the right order. Now call the
|
|
destructors. We have to process this array from the front. */
|
|
for (i = 0; i < nmaps; ++i)
|
|
{
|
|
l = maps[i];
|
|
|
|
if (l->l_init_called)
|
|
{
|
|
/* Make sure nothing happens if we are called twice. */
|
|
l->l_init_called = 0;
|
|
|
|
/* Is there a destructor function? */
|
|
if (l->l_info[DT_FINI_ARRAY] != NULL
|
|
|| l->l_info[DT_FINI] != NULL)
|
|
{
|
|
/* When debugging print a message first. */
|
|
if (__builtin_expect (GLRO(dl_debug_mask)
|
|
& DL_DEBUG_IMPCALLS, 0))
|
|
_dl_debug_printf ("\ncalling fini: %s [%lu]\n\n",
|
|
l->l_name[0] ? l->l_name : rtld_progname,
|
|
ns);
|
|
|
|
/* First see whether an array is given. */
|
|
if (l->l_info[DT_FINI_ARRAY] != NULL)
|
|
{
|
|
ElfW(Addr) *array =
|
|
(ElfW(Addr) *) (l->l_addr
|
|
+ l->l_info[DT_FINI_ARRAY]->d_un.d_ptr);
|
|
unsigned int i = (l->l_info[DT_FINI_ARRAYSZ]->d_un.d_val
|
|
/ sizeof (ElfW(Addr)));
|
|
while (i-- > 0)
|
|
((fini_t) array[i]) ();
|
|
}
|
|
|
|
/* Next try the old-style destructor. */
|
|
if (l->l_info[DT_FINI] != NULL)
|
|
((fini_t) DL_DT_FINI_ADDRESS (l, l->l_addr + l->l_info[DT_FINI]->d_un.d_ptr)) ();
|
|
}
|
|
|
|
#ifdef SHARED
|
|
/* Auditing checkpoint: another object closed. */
|
|
if (!do_audit && __builtin_expect (GLRO(dl_naudit) > 0, 0))
|
|
{
|
|
struct audit_ifaces *afct = GLRO(dl_audit);
|
|
for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
|
|
{
|
|
if (afct->objclose != NULL)
|
|
/* Return value is ignored. */
|
|
(void) afct->objclose (&l->l_audit[cnt].cookie);
|
|
|
|
afct = afct->next;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Correct the previous increment. */
|
|
--l->l_direct_opencount;
|
|
}
|
|
}
|
|
|
|
#ifdef SHARED
|
|
if (! do_audit && GLRO(dl_naudit) > 0)
|
|
{
|
|
do_audit = 1;
|
|
goto again;
|
|
}
|
|
|
|
if (__builtin_expect (GLRO(dl_debug_mask) & DL_DEBUG_STATISTICS, 0))
|
|
_dl_debug_printf ("\nruntime linker statistics:\n"
|
|
" final number of relocations: %lu\n"
|
|
"final number of relocations from cache: %lu\n",
|
|
GL(dl_num_relocations),
|
|
GL(dl_num_cache_relocations));
|
|
#endif
|
|
}
|