mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-26 06:50:07 +00:00
347a5b592c
Converting double precision constants to float is now affected by the runtime dynamic rounding mode instead of being evaluated at compile time with default rounding mode (except static object initializers). This can change the computed result and cause performance regression. The known correctness issues (increased ulp errors) are already fixed, this patch fixes remaining cases of unnecessary runtime conversions. Add float M_* macros to math.h as new GNU extension API. To avoid conversions the new M_* macros are used and instead of casting double literals to float, use float literals (only required if the conversion is inexact). The patch was tested on aarch64 where the following symbols had new spurious conversion instructions that got fixed: __clog10f __gammaf_r_finite@GLIBC_2.17 __j0f_finite@GLIBC_2.17 __j1f_finite@GLIBC_2.17 __jnf_finite@GLIBC_2.17 __kernel_casinhf __lgamma_negf __log1pf __y0f_finite@GLIBC_2.17 __y1f_finite@GLIBC_2.17 cacosf cacoshf casinhf catanf catanhf clogf gammaf_positive Fixes bug 28713. Reviewed-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
216 lines
5.7 KiB
C
216 lines
5.7 KiB
C
/* Implementation of gamma function according to ISO C.
|
|
Copyright (C) 1997-2022 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <float.h>
|
|
#include <libm-alias-finite.h>
|
|
|
|
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
|
|
approximation to gamma function. */
|
|
|
|
static const float gamma_coeff[] =
|
|
{
|
|
0x1.555556p-4f,
|
|
-0xb.60b61p-12f,
|
|
0x3.403404p-12f,
|
|
};
|
|
|
|
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
|
|
|
|
/* Return gamma (X), for positive X less than 42, in the form R *
|
|
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
|
|
avoid overflow or underflow in intermediate calculations. */
|
|
|
|
static float
|
|
gammaf_positive (float x, int *exp2_adj)
|
|
{
|
|
int local_signgam;
|
|
if (x < 0.5f)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_expf (__ieee754_lgammaf_r (x + 1, &local_signgam)) / x;
|
|
}
|
|
else if (x <= 1.5f)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_expf (__ieee754_lgammaf_r (x, &local_signgam));
|
|
}
|
|
else if (x < 2.5f)
|
|
{
|
|
*exp2_adj = 0;
|
|
float x_adj = x - 1;
|
|
return (__ieee754_expf (__ieee754_lgammaf_r (x_adj, &local_signgam))
|
|
* x_adj);
|
|
}
|
|
else
|
|
{
|
|
float eps = 0;
|
|
float x_eps = 0;
|
|
float x_adj = x;
|
|
float prod = 1;
|
|
if (x < 4.0f)
|
|
{
|
|
/* Adjust into the range for applying Stirling's
|
|
approximation. */
|
|
float n = ceilf (4.0f - x);
|
|
x_adj = math_narrow_eval (x + n);
|
|
x_eps = (x - (x_adj - n));
|
|
prod = __gamma_productf (x_adj - n, x_eps, n, &eps);
|
|
}
|
|
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
|
|
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
|
|
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
|
|
factored out. */
|
|
float exp_adj = -eps;
|
|
float x_adj_int = roundf (x_adj);
|
|
float x_adj_frac = x_adj - x_adj_int;
|
|
int x_adj_log2;
|
|
float x_adj_mant = __frexpf (x_adj, &x_adj_log2);
|
|
if (x_adj_mant < M_SQRT1_2f)
|
|
{
|
|
x_adj_log2--;
|
|
x_adj_mant *= 2.0f;
|
|
}
|
|
*exp2_adj = x_adj_log2 * (int) x_adj_int;
|
|
float ret = (__ieee754_powf (x_adj_mant, x_adj)
|
|
* __ieee754_exp2f (x_adj_log2 * x_adj_frac)
|
|
* __ieee754_expf (-x_adj)
|
|
* sqrtf (2 * M_PIf / x_adj)
|
|
/ prod);
|
|
exp_adj += x_eps * __ieee754_logf (x_adj);
|
|
float bsum = gamma_coeff[NCOEFF - 1];
|
|
float x_adj2 = x_adj * x_adj;
|
|
for (size_t i = 1; i <= NCOEFF - 1; i++)
|
|
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
|
|
exp_adj += bsum / x_adj;
|
|
return ret + ret * __expm1f (exp_adj);
|
|
}
|
|
}
|
|
|
|
float
|
|
__ieee754_gammaf_r (float x, int *signgamp)
|
|
{
|
|
int32_t hx;
|
|
float ret;
|
|
|
|
GET_FLOAT_WORD (hx, x);
|
|
|
|
if (__glibc_unlikely ((hx & 0x7fffffff) == 0))
|
|
{
|
|
/* Return value for x == 0 is Inf with divide by zero exception. */
|
|
*signgamp = 0;
|
|
return 1.0 / x;
|
|
}
|
|
if (__builtin_expect (hx < 0, 0)
|
|
&& (uint32_t) hx < 0xff800000 && rintf (x) == x)
|
|
{
|
|
/* Return value for integer x < 0 is NaN with invalid exception. */
|
|
*signgamp = 0;
|
|
return (x - x) / (x - x);
|
|
}
|
|
if (__glibc_unlikely (hx == 0xff800000))
|
|
{
|
|
/* x == -Inf. According to ISO this is NaN. */
|
|
*signgamp = 0;
|
|
return x - x;
|
|
}
|
|
if (__glibc_unlikely ((hx & 0x7f800000) == 0x7f800000))
|
|
{
|
|
/* Positive infinity (return positive infinity) or NaN (return
|
|
NaN). */
|
|
*signgamp = 0;
|
|
return x + x;
|
|
}
|
|
|
|
if (x >= 36.0f)
|
|
{
|
|
/* Overflow. */
|
|
*signgamp = 0;
|
|
ret = math_narrow_eval (FLT_MAX * FLT_MAX);
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
SET_RESTORE_ROUNDF (FE_TONEAREST);
|
|
if (x > 0.0f)
|
|
{
|
|
*signgamp = 0;
|
|
int exp2_adj;
|
|
float tret = gammaf_positive (x, &exp2_adj);
|
|
ret = __scalbnf (tret, exp2_adj);
|
|
}
|
|
else if (x >= -FLT_EPSILON / 4.0f)
|
|
{
|
|
*signgamp = 0;
|
|
ret = 1.0f / x;
|
|
}
|
|
else
|
|
{
|
|
float tx = truncf (x);
|
|
*signgamp = (tx == 2.0f * truncf (tx / 2.0f)) ? -1 : 1;
|
|
if (x <= -42.0f)
|
|
/* Underflow. */
|
|
ret = FLT_MIN * FLT_MIN;
|
|
else
|
|
{
|
|
float frac = tx - x;
|
|
if (frac > 0.5f)
|
|
frac = 1.0f - frac;
|
|
float sinpix = (frac <= 0.25f
|
|
? __sinf (M_PIf * frac)
|
|
: __cosf (M_PIf * (0.5f - frac)));
|
|
int exp2_adj;
|
|
float tret = M_PIf / (-x * sinpix
|
|
* gammaf_positive (-x, &exp2_adj));
|
|
ret = __scalbnf (tret, -exp2_adj);
|
|
math_check_force_underflow_nonneg (ret);
|
|
}
|
|
}
|
|
ret = math_narrow_eval (ret);
|
|
}
|
|
if (isinf (ret) && x != 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysignf (FLT_MAX, ret) * FLT_MAX);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysignf (FLT_MAX, ret) * FLT_MAX);
|
|
return ret;
|
|
}
|
|
else if (ret == 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysignf (FLT_MIN, ret) * FLT_MIN);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysignf (FLT_MIN, ret) * FLT_MIN);
|
|
return ret;
|
|
}
|
|
else
|
|
return ret;
|
|
}
|
|
libm_alias_finite (__ieee754_gammaf_r, __gammaf_r)
|