mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-22 13:00:06 +00:00
30891f35fa
We stopped adding "Contributed by" or similar lines in sources in 2012 in favour of git logs and keeping the Contributors section of the glibc manual up to date. Removing these lines makes the license header a bit more consistent across files and also removes the possibility of error in attribution when license blocks or files are copied across since the contributed-by lines don't actually reflect reality in those cases. Move all "Contributed by" and similar lines (Written by, Test by, etc.) into a new file CONTRIBUTED-BY to retain record of these contributions. These contributors are also mentioned in manual/contrib.texi, so we just maintain this additional record as a courtesy to the earlier developers. The following scripts were used to filter a list of files to edit in place and to clean up the CONTRIBUTED-BY file respectively. These were not added to the glibc sources because they're not expected to be of any use in future given that this is a one time task: https://gist.github.com/siddhesh/b5ecac94eabfd72ed2916d6d8157e7dc https://gist.github.com/siddhesh/15ea1f5e435ace9774f485030695ee02 Reviewed-by: Carlos O'Donell <carlos@redhat.com>
249 lines
8.1 KiB
C
249 lines
8.1 KiB
C
/* Copyright (C) 1991-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
/* If you consider tuning this algorithm, you should consult first:
|
|
Engineering a sort function; Jon Bentley and M. Douglas McIlroy;
|
|
Software - Practice and Experience; Vol. 23 (11), 1249-1265, 1993. */
|
|
|
|
#include <alloca.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
/* Byte-wise swap two items of size SIZE. */
|
|
#define SWAP(a, b, size) \
|
|
do \
|
|
{ \
|
|
size_t __size = (size); \
|
|
char *__a = (a), *__b = (b); \
|
|
do \
|
|
{ \
|
|
char __tmp = *__a; \
|
|
*__a++ = *__b; \
|
|
*__b++ = __tmp; \
|
|
} while (--__size > 0); \
|
|
} while (0)
|
|
|
|
/* Discontinue quicksort algorithm when partition gets below this size.
|
|
This particular magic number was chosen to work best on a Sun 4/260. */
|
|
#define MAX_THRESH 4
|
|
|
|
/* Stack node declarations used to store unfulfilled partition obligations. */
|
|
typedef struct
|
|
{
|
|
char *lo;
|
|
char *hi;
|
|
} stack_node;
|
|
|
|
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
|
/* The stack needs log (total_elements) entries (we could even subtract
|
|
log(MAX_THRESH)). Since total_elements has type size_t, we get as
|
|
upper bound for log (total_elements):
|
|
bits per byte (CHAR_BIT) * sizeof(size_t). */
|
|
#define STACK_SIZE (CHAR_BIT * sizeof (size_t))
|
|
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
|
|
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
|
|
#define STACK_NOT_EMPTY (stack < top)
|
|
|
|
|
|
/* Order size using quicksort. This implementation incorporates
|
|
four optimizations discussed in Sedgewick:
|
|
|
|
1. Non-recursive, using an explicit stack of pointer that store the
|
|
next array partition to sort. To save time, this maximum amount
|
|
of space required to store an array of SIZE_MAX is allocated on the
|
|
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
|
|
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
|
|
Pretty cheap, actually.
|
|
|
|
2. Chose the pivot element using a median-of-three decision tree.
|
|
This reduces the probability of selecting a bad pivot value and
|
|
eliminates certain extraneous comparisons.
|
|
|
|
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
|
insertion sort to order the MAX_THRESH items within each partition.
|
|
This is a big win, since insertion sort is faster for small, mostly
|
|
sorted array segments.
|
|
|
|
4. The larger of the two sub-partitions is always pushed onto the
|
|
stack first, with the algorithm then concentrating on the
|
|
smaller partition. This *guarantees* no more than log (total_elems)
|
|
stack size is needed (actually O(1) in this case)! */
|
|
|
|
void
|
|
_quicksort (void *const pbase, size_t total_elems, size_t size,
|
|
__compar_d_fn_t cmp, void *arg)
|
|
{
|
|
char *base_ptr = (char *) pbase;
|
|
|
|
const size_t max_thresh = MAX_THRESH * size;
|
|
|
|
if (total_elems == 0)
|
|
/* Avoid lossage with unsigned arithmetic below. */
|
|
return;
|
|
|
|
if (total_elems > MAX_THRESH)
|
|
{
|
|
char *lo = base_ptr;
|
|
char *hi = &lo[size * (total_elems - 1)];
|
|
stack_node stack[STACK_SIZE];
|
|
stack_node *top = stack;
|
|
|
|
PUSH (NULL, NULL);
|
|
|
|
while (STACK_NOT_EMPTY)
|
|
{
|
|
char *left_ptr;
|
|
char *right_ptr;
|
|
|
|
/* Select median value from among LO, MID, and HI. Rearrange
|
|
LO and HI so the three values are sorted. This lowers the
|
|
probability of picking a pathological pivot value and
|
|
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
|
|
the while loops. */
|
|
|
|
char *mid = lo + size * ((hi - lo) / size >> 1);
|
|
|
|
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
|
|
SWAP (mid, lo, size);
|
|
if ((*cmp) ((void *) hi, (void *) mid, arg) < 0)
|
|
SWAP (mid, hi, size);
|
|
else
|
|
goto jump_over;
|
|
if ((*cmp) ((void *) mid, (void *) lo, arg) < 0)
|
|
SWAP (mid, lo, size);
|
|
jump_over:;
|
|
|
|
left_ptr = lo + size;
|
|
right_ptr = hi - size;
|
|
|
|
/* Here's the famous ``collapse the walls'' section of quicksort.
|
|
Gotta like those tight inner loops! They are the main reason
|
|
that this algorithm runs much faster than others. */
|
|
do
|
|
{
|
|
while ((*cmp) ((void *) left_ptr, (void *) mid, arg) < 0)
|
|
left_ptr += size;
|
|
|
|
while ((*cmp) ((void *) mid, (void *) right_ptr, arg) < 0)
|
|
right_ptr -= size;
|
|
|
|
if (left_ptr < right_ptr)
|
|
{
|
|
SWAP (left_ptr, right_ptr, size);
|
|
if (mid == left_ptr)
|
|
mid = right_ptr;
|
|
else if (mid == right_ptr)
|
|
mid = left_ptr;
|
|
left_ptr += size;
|
|
right_ptr -= size;
|
|
}
|
|
else if (left_ptr == right_ptr)
|
|
{
|
|
left_ptr += size;
|
|
right_ptr -= size;
|
|
break;
|
|
}
|
|
}
|
|
while (left_ptr <= right_ptr);
|
|
|
|
/* Set up pointers for next iteration. First determine whether
|
|
left and right partitions are below the threshold size. If so,
|
|
ignore one or both. Otherwise, push the larger partition's
|
|
bounds on the stack and continue sorting the smaller one. */
|
|
|
|
if ((size_t) (right_ptr - lo) <= max_thresh)
|
|
{
|
|
if ((size_t) (hi - left_ptr) <= max_thresh)
|
|
/* Ignore both small partitions. */
|
|
POP (lo, hi);
|
|
else
|
|
/* Ignore small left partition. */
|
|
lo = left_ptr;
|
|
}
|
|
else if ((size_t) (hi - left_ptr) <= max_thresh)
|
|
/* Ignore small right partition. */
|
|
hi = right_ptr;
|
|
else if ((right_ptr - lo) > (hi - left_ptr))
|
|
{
|
|
/* Push larger left partition indices. */
|
|
PUSH (lo, right_ptr);
|
|
lo = left_ptr;
|
|
}
|
|
else
|
|
{
|
|
/* Push larger right partition indices. */
|
|
PUSH (left_ptr, hi);
|
|
hi = right_ptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
|
is completely sorted using insertion sort, since this is efficient
|
|
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
|
of the array to sort, and END_PTR points at the very last element in
|
|
the array (*not* one beyond it!). */
|
|
|
|
#define min(x, y) ((x) < (y) ? (x) : (y))
|
|
|
|
{
|
|
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
|
|
char *tmp_ptr = base_ptr;
|
|
char *thresh = min(end_ptr, base_ptr + max_thresh);
|
|
char *run_ptr;
|
|
|
|
/* Find smallest element in first threshold and place it at the
|
|
array's beginning. This is the smallest array element,
|
|
and the operation speeds up insertion sort's inner loop. */
|
|
|
|
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
|
if ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
|
|
tmp_ptr = run_ptr;
|
|
|
|
if (tmp_ptr != base_ptr)
|
|
SWAP (tmp_ptr, base_ptr, size);
|
|
|
|
/* Insertion sort, running from left-hand-side up to right-hand-side. */
|
|
|
|
run_ptr = base_ptr + size;
|
|
while ((run_ptr += size) <= end_ptr)
|
|
{
|
|
tmp_ptr = run_ptr - size;
|
|
while ((*cmp) ((void *) run_ptr, (void *) tmp_ptr, arg) < 0)
|
|
tmp_ptr -= size;
|
|
|
|
tmp_ptr += size;
|
|
if (tmp_ptr != run_ptr)
|
|
{
|
|
char *trav;
|
|
|
|
trav = run_ptr + size;
|
|
while (--trav >= run_ptr)
|
|
{
|
|
char c = *trav;
|
|
char *hi, *lo;
|
|
|
|
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
|
*hi = *lo;
|
|
*hi = c;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|