mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-13 20:50:08 +00:00
e44acb2063
Similar to the changes that were made to call sqrt functions directly in glibc, instead of __ieee754_sqrt variants, so that the compiler could inline them automatically without needing special inline definitions in lots of math_private.h headers, this patch makes libm code call floor functions directly instead of __floor variants, removing the inlines / macros for x86_64 (SSE4.1) and powerpc (POWER5). The redirection used to ensure that __ieee754_sqrt does still get called when the compiler doesn't inline a built-in function expansion is refactored so it can be applied to other functions; the refactoring is arranged so it's not limited to unary functions either (it would be reasonable to use this mechanism for copysign - removing the inline in math_private_calls.h but also eliminating unnecessary local PLT entry use in the cases (powerpc soft-float and e500v1, for IBM long double) where copysign calls don't get inlined). The point of this change is that more architectures can get floor calls inlined where they weren't previously (AArch64, for example), without needing special inline definitions in their math_private.h, and existing such definitions in math_private.h headers can be removed. Note that it's possible that in some cases an inline may be used where an IFUNC call was previously used - this is the case on x86_64, for example. I think the direct calls to floor are still appropriate; if there's any significant performance cost from inline SSE2 floor instead of an IFUNC call ending up with SSE4.1 floor, that indicates that either the function should be doing something else that's faster than using floor at all, or it should itself have IFUNC variants, or that the compiler choice of inlining for generic tuning should change to allow for the possibility that, by not inlining, an SSE4.1 IFUNC might be called at runtime - but not that glibc should avoid calling floor internally. (After all, all the same considerations would apply to any user program calling floor, where it might either be inlined or left as an out-of-line call allowing for a possible IFUNC.) Tested for x86_64, and with build-many-glibcs.py. * include/math.h [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT): New macro. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_LDBL): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_F128): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (MATH_REDIRECT_UNARY_ARGS): Likewise. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (sqrt): Redirect using MATH_REDIRECT. [!_ISOMAC && !(__FINITE_MATH_ONLY__ && __FINITE_MATH_ONLY__ > 0) && !NO_MATH_REDIRECT] (floor): Likewise. * sysdeps/aarch64/fpu/s_floor.c: Define NO_MATH_REDIRECT before header inclusion. * sysdeps/aarch64/fpu/s_floorf.c: Likewise. * sysdeps/ieee754/dbl-64/s_floor.c: Likewise. * sysdeps/ieee754/dbl-64/wordsize-64/s_floor.c: Likewise. * sysdeps/ieee754/float128/s_floorf128.c: Likewise. * sysdeps/ieee754/flt-32/s_floorf.c: Likewise. * sysdeps/ieee754/ldbl-128/s_floorl.c: Likewise. * sysdeps/ieee754/ldbl-128ibm/s_floorl.c: Likewise. * sysdeps/m68k/m680x0/fpu/s_floor_template.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floor.c: Likewise. * sysdeps/powerpc/powerpc32/power4/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/powerpc/powerpc64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/riscv/rv64/rvd/s_floor.c: Likewise. * sysdeps/riscv/rvf/s_floorf.c: Likewise. * sysdeps/sparc/sparc64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/sparc/sparc64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/x86_64/fpu/multiarch/s_floor.c: Likewise. * sysdeps/x86_64/fpu/multiarch/s_floorf.c: Likewise. * sysdeps/powerpc/fpu/math_private.h [_ARCH_PWR5X] (__floor): Remove macro. [_ARCH_PWR5X] (__floorf): Likewise. * sysdeps/x86_64/fpu/math_private.h [__SSE4_1__] (__floor): Remove inline function. [__SSE4_1__] (__floorf): Likewise. * math/w_lgamma_main.c (LGFUNC (__lgamma)): Use floor functions instead of __floor variants. * math/w_lgamma_r_compat.c (__lgamma_r): Likewise. * math/w_lgammaf_main.c (LGFUNC (__lgammaf)): Likewise. * math/w_lgammaf_r_compat.c (__lgammaf_r): Likewise. * math/w_lgammal_main.c (LGFUNC (__lgammal)): Likewise. * math/w_lgammal_r_compat.c (__lgammal_r): Likewise. * math/w_tgamma_compat.c (__tgamma): Likewise. * math/w_tgamma_template.c (M_DECL_FUNC (__tgamma)): Likewise. * math/w_tgammaf_compat.c (__tgammaf): Likewise. * math/w_tgammal_compat.c (__tgammal): Likewise. * sysdeps/ieee754/dbl-64/e_lgamma_r.c (sin_pi): Likewise. * sysdeps/ieee754/dbl-64/k_rem_pio2.c (__kernel_rem_pio2): Likewise. * sysdeps/ieee754/dbl-64/lgamma_neg.c (__lgamma_neg): Likewise. * sysdeps/ieee754/flt-32/e_lgammaf_r.c (sin_pif): Likewise. * sysdeps/ieee754/flt-32/lgamma_negf.c (__lgamma_negf): Likewise. * sysdeps/ieee754/ldbl-128/e_lgammal_r.c (__ieee754_lgammal_r): Likewise. * sysdeps/ieee754/ldbl-128/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/ieee754/ldbl-128/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_lgammal_r.c (__ieee754_lgammal_r): Likewise. * sysdeps/ieee754/ldbl-128ibm/e_powl.c (__ieee754_powl): Likewise. * sysdeps/ieee754/ldbl-128ibm/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_expm1l.c (__expm1l): Likewise. * sysdeps/ieee754/ldbl-128ibm/s_truncl.c (__truncl): Likewise. * sysdeps/ieee754/ldbl-96/e_lgammal_r.c (sin_pi): Likewise. * sysdeps/ieee754/ldbl-96/lgamma_negl.c (__lgamma_negl): Likewise. * sysdeps/powerpc/power5+/fpu/s_modf.c (__modf): Likewise. * sysdeps/powerpc/power5+/fpu/s_modff.c (__modff): Likewise.
453 lines
12 KiB
C
453 lines
12 KiB
C
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
|
|
/* Expansions and modifications for 128-bit long double are
|
|
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
|
and are incorporated herein by permission of the author. The author
|
|
reserves the right to distribute this material elsewhere under different
|
|
copying permissions. These modifications are distributed here under
|
|
the following terms:
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* __ieee754_powl(x,y) return x**y
|
|
*
|
|
* n
|
|
* Method: Let x = 2 * (1+f)
|
|
* 1. Compute and return log2(x) in two pieces:
|
|
* log2(x) = w1 + w2,
|
|
* where w1 has 113-53 = 60 bit trailing zeros.
|
|
* 2. Perform y*log2(x) = n+y' by simulating muti-precision
|
|
* arithmetic, where |y'|<=0.5.
|
|
* 3. Return x**y = 2**n*exp(y'*log2)
|
|
*
|
|
* Special cases:
|
|
* 1. (anything) ** 0 is 1
|
|
* 2. (anything) ** 1 is itself
|
|
* 3. (anything) ** NAN is NAN
|
|
* 4. NAN ** (anything except 0) is NAN
|
|
* 5. +-(|x| > 1) ** +INF is +INF
|
|
* 6. +-(|x| > 1) ** -INF is +0
|
|
* 7. +-(|x| < 1) ** +INF is +0
|
|
* 8. +-(|x| < 1) ** -INF is +INF
|
|
* 9. +-1 ** +-INF is NAN
|
|
* 10. +0 ** (+anything except 0, NAN) is +0
|
|
* 11. -0 ** (+anything except 0, NAN, odd integer) is +0
|
|
* 12. +0 ** (-anything except 0, NAN) is +INF
|
|
* 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
|
|
* 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
|
|
* 15. +INF ** (+anything except 0,NAN) is +INF
|
|
* 16. +INF ** (-anything except 0,NAN) is +0
|
|
* 17. -INF ** (anything) = -0 ** (-anything)
|
|
* 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
|
|
* 19. (-anything except 0 and inf) ** (non-integer) is NAN
|
|
*
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <math-barriers.h>
|
|
#include <math_private.h>
|
|
|
|
static const _Float128 bp[] = {
|
|
1,
|
|
L(1.5),
|
|
};
|
|
|
|
/* log_2(1.5) */
|
|
static const _Float128 dp_h[] = {
|
|
0.0,
|
|
L(5.8496250072115607565592654282227158546448E-1)
|
|
};
|
|
|
|
/* Low part of log_2(1.5) */
|
|
static const _Float128 dp_l[] = {
|
|
0.0,
|
|
L(1.0579781240112554492329533686862998106046E-16)
|
|
};
|
|
|
|
static const _Float128 zero = 0,
|
|
one = 1,
|
|
two = 2,
|
|
two113 = L(1.0384593717069655257060992658440192E34),
|
|
huge = L(1.0e3000),
|
|
tiny = L(1.0e-3000);
|
|
|
|
/* 3/2 log x = 3 z + z^3 + z^3 (z^2 R(z^2))
|
|
z = (x-1)/(x+1)
|
|
1 <= x <= 1.25
|
|
Peak relative error 2.3e-37 */
|
|
static const _Float128 LN[] =
|
|
{
|
|
L(-3.0779177200290054398792536829702930623200E1),
|
|
L(6.5135778082209159921251824580292116201640E1),
|
|
L(-4.6312921812152436921591152809994014413540E1),
|
|
L(1.2510208195629420304615674658258363295208E1),
|
|
L(-9.9266909031921425609179910128531667336670E-1)
|
|
};
|
|
static const _Float128 LD[] =
|
|
{
|
|
L(-5.129862866715009066465422805058933131960E1),
|
|
L(1.452015077564081884387441590064272782044E2),
|
|
L(-1.524043275549860505277434040464085593165E2),
|
|
L(7.236063513651544224319663428634139768808E1),
|
|
L(-1.494198912340228235853027849917095580053E1)
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
/* exp(x) = 1 + x - x / (1 - 2 / (x - x^2 R(x^2)))
|
|
0 <= x <= 0.5
|
|
Peak relative error 5.7e-38 */
|
|
static const _Float128 PN[] =
|
|
{
|
|
L(5.081801691915377692446852383385968225675E8),
|
|
L(9.360895299872484512023336636427675327355E6),
|
|
L(4.213701282274196030811629773097579432957E4),
|
|
L(5.201006511142748908655720086041570288182E1),
|
|
L(9.088368420359444263703202925095675982530E-3),
|
|
};
|
|
static const _Float128 PD[] =
|
|
{
|
|
L(3.049081015149226615468111430031590411682E9),
|
|
L(1.069833887183886839966085436512368982758E8),
|
|
L(8.259257717868875207333991924545445705394E5),
|
|
L(1.872583833284143212651746812884298360922E3),
|
|
/* 1.0E0 */
|
|
};
|
|
|
|
static const _Float128
|
|
/* ln 2 */
|
|
lg2 = L(6.9314718055994530941723212145817656807550E-1),
|
|
lg2_h = L(6.9314718055994528622676398299518041312695E-1),
|
|
lg2_l = L(2.3190468138462996154948554638754786504121E-17),
|
|
ovt = L(8.0085662595372944372e-0017),
|
|
/* 2/(3*log(2)) */
|
|
cp = L(9.6179669392597560490661645400126142495110E-1),
|
|
cp_h = L(9.6179669392597555432899980587535537779331E-1),
|
|
cp_l = L(5.0577616648125906047157785230014751039424E-17);
|
|
|
|
_Float128
|
|
__ieee754_powl (_Float128 x, _Float128 y)
|
|
{
|
|
_Float128 z, ax, z_h, z_l, p_h, p_l;
|
|
_Float128 y1, t1, t2, r, s, sgn, t, u, v, w;
|
|
_Float128 s2, s_h, s_l, t_h, t_l, ay;
|
|
int32_t i, j, k, yisint, n;
|
|
uint32_t ix, iy;
|
|
int32_t hx, hy;
|
|
ieee854_long_double_shape_type o, p, q;
|
|
|
|
p.value = x;
|
|
hx = p.parts32.w0;
|
|
ix = hx & 0x7fffffff;
|
|
|
|
q.value = y;
|
|
hy = q.parts32.w0;
|
|
iy = hy & 0x7fffffff;
|
|
|
|
|
|
/* y==zero: x**0 = 1 */
|
|
if ((iy | q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0
|
|
&& !issignaling (x))
|
|
return one;
|
|
|
|
/* 1.0**y = 1; -1.0**+-Inf = 1 */
|
|
if (x == one && !issignaling (y))
|
|
return one;
|
|
if (x == -1 && iy == 0x7fff0000
|
|
&& (q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)
|
|
return one;
|
|
|
|
/* +-NaN return x+y */
|
|
if ((ix > 0x7fff0000)
|
|
|| ((ix == 0x7fff0000)
|
|
&& ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) != 0))
|
|
|| (iy > 0x7fff0000)
|
|
|| ((iy == 0x7fff0000)
|
|
&& ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) != 0)))
|
|
return x + y;
|
|
|
|
/* determine if y is an odd int when x < 0
|
|
* yisint = 0 ... y is not an integer
|
|
* yisint = 1 ... y is an odd int
|
|
* yisint = 2 ... y is an even int
|
|
*/
|
|
yisint = 0;
|
|
if (hx < 0)
|
|
{
|
|
if (iy >= 0x40700000) /* 2^113 */
|
|
yisint = 2; /* even integer y */
|
|
else if (iy >= 0x3fff0000) /* 1.0 */
|
|
{
|
|
if (floorl (y) == y)
|
|
{
|
|
z = 0.5 * y;
|
|
if (floorl (z) == z)
|
|
yisint = 2;
|
|
else
|
|
yisint = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* special value of y */
|
|
if ((q.parts32.w1 | q.parts32.w2 | q.parts32.w3) == 0)
|
|
{
|
|
if (iy == 0x7fff0000) /* y is +-inf */
|
|
{
|
|
if (((ix - 0x3fff0000) | p.parts32.w1 | p.parts32.w2 | p.parts32.w3)
|
|
== 0)
|
|
return y - y; /* +-1**inf is NaN */
|
|
else if (ix >= 0x3fff0000) /* (|x|>1)**+-inf = inf,0 */
|
|
return (hy >= 0) ? y : zero;
|
|
else /* (|x|<1)**-,+inf = inf,0 */
|
|
return (hy < 0) ? -y : zero;
|
|
}
|
|
if (iy == 0x3fff0000)
|
|
{ /* y is +-1 */
|
|
if (hy < 0)
|
|
return one / x;
|
|
else
|
|
return x;
|
|
}
|
|
if (hy == 0x40000000)
|
|
return x * x; /* y is 2 */
|
|
if (hy == 0x3ffe0000)
|
|
{ /* y is 0.5 */
|
|
if (hx >= 0) /* x >= +0 */
|
|
return sqrtl (x);
|
|
}
|
|
}
|
|
|
|
ax = fabsl (x);
|
|
/* special value of x */
|
|
if ((p.parts32.w1 | p.parts32.w2 | p.parts32.w3) == 0)
|
|
{
|
|
if (ix == 0x7fff0000 || ix == 0 || ix == 0x3fff0000)
|
|
{
|
|
z = ax; /*x is +-0,+-inf,+-1 */
|
|
if (hy < 0)
|
|
z = one / z; /* z = (1/|x|) */
|
|
if (hx < 0)
|
|
{
|
|
if (((ix - 0x3fff0000) | yisint) == 0)
|
|
{
|
|
z = (z - z) / (z - z); /* (-1)**non-int is NaN */
|
|
}
|
|
else if (yisint == 1)
|
|
z = -z; /* (x<0)**odd = -(|x|**odd) */
|
|
}
|
|
return z;
|
|
}
|
|
}
|
|
|
|
/* (x<0)**(non-int) is NaN */
|
|
if (((((uint32_t) hx >> 31) - 1) | yisint) == 0)
|
|
return (x - x) / (x - x);
|
|
|
|
/* sgn (sign of result -ve**odd) = -1 else = 1 */
|
|
sgn = one;
|
|
if (((((uint32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
|
|
sgn = -one; /* (-ve)**(odd int) */
|
|
|
|
/* |y| is huge.
|
|
2^-16495 = 1/2 of smallest representable value.
|
|
If (1 - 1/131072)^y underflows, y > 1.4986e9 */
|
|
if (iy > 0x401d654b)
|
|
{
|
|
/* if (1 - 2^-113)^y underflows, y > 1.1873e38 */
|
|
if (iy > 0x407d654b)
|
|
{
|
|
if (ix <= 0x3ffeffff)
|
|
return (hy < 0) ? huge * huge : tiny * tiny;
|
|
if (ix >= 0x3fff0000)
|
|
return (hy > 0) ? huge * huge : tiny * tiny;
|
|
}
|
|
/* over/underflow if x is not close to one */
|
|
if (ix < 0x3ffeffff)
|
|
return (hy < 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
if (ix > 0x3fff0000)
|
|
return (hy > 0) ? sgn * huge * huge : sgn * tiny * tiny;
|
|
}
|
|
|
|
ay = y > 0 ? y : -y;
|
|
if (ay < 0x1p-128)
|
|
y = y < 0 ? -0x1p-128 : 0x1p-128;
|
|
|
|
n = 0;
|
|
/* take care subnormal number */
|
|
if (ix < 0x00010000)
|
|
{
|
|
ax *= two113;
|
|
n -= 113;
|
|
o.value = ax;
|
|
ix = o.parts32.w0;
|
|
}
|
|
n += ((ix) >> 16) - 0x3fff;
|
|
j = ix & 0x0000ffff;
|
|
/* determine interval */
|
|
ix = j | 0x3fff0000; /* normalize ix */
|
|
if (j <= 0x3988)
|
|
k = 0; /* |x|<sqrt(3/2) */
|
|
else if (j < 0xbb67)
|
|
k = 1; /* |x|<sqrt(3) */
|
|
else
|
|
{
|
|
k = 0;
|
|
n += 1;
|
|
ix -= 0x00010000;
|
|
}
|
|
|
|
o.value = ax;
|
|
o.parts32.w0 = ix;
|
|
ax = o.value;
|
|
|
|
/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
|
|
u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
|
|
v = one / (ax + bp[k]);
|
|
s = u * v;
|
|
s_h = s;
|
|
|
|
o.value = s_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
s_h = o.value;
|
|
/* t_h=ax+bp[k] High */
|
|
t_h = ax + bp[k];
|
|
o.value = t_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t_h = o.value;
|
|
t_l = ax - (t_h - bp[k]);
|
|
s_l = v * ((u - s_h * t_h) - s_h * t_l);
|
|
/* compute log(ax) */
|
|
s2 = s * s;
|
|
u = LN[0] + s2 * (LN[1] + s2 * (LN[2] + s2 * (LN[3] + s2 * LN[4])));
|
|
v = LD[0] + s2 * (LD[1] + s2 * (LD[2] + s2 * (LD[3] + s2 * (LD[4] + s2))));
|
|
r = s2 * s2 * u / v;
|
|
r += s_l * (s_h + s);
|
|
s2 = s_h * s_h;
|
|
t_h = 3.0 + s2 + r;
|
|
o.value = t_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t_h = o.value;
|
|
t_l = r - ((t_h - 3.0) - s2);
|
|
/* u+v = s*(1+...) */
|
|
u = s_h * t_h;
|
|
v = s_l * t_h + t_l * s;
|
|
/* 2/(3log2)*(s+...) */
|
|
p_h = u + v;
|
|
o.value = p_h;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
p_h = o.value;
|
|
p_l = v - (p_h - u);
|
|
z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
|
|
z_l = cp_l * p_h + p_l * cp + dp_l[k];
|
|
/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
|
|
t = (_Float128) n;
|
|
t1 = (((z_h + z_l) + dp_h[k]) + t);
|
|
o.value = t1;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t1 = o.value;
|
|
t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
|
|
|
|
/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
|
|
y1 = y;
|
|
o.value = y1;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
y1 = o.value;
|
|
p_l = (y - y1) * t1 + y * t2;
|
|
p_h = y1 * t1;
|
|
z = p_l + p_h;
|
|
o.value = z;
|
|
j = o.parts32.w0;
|
|
if (j >= 0x400d0000) /* z >= 16384 */
|
|
{
|
|
/* if z > 16384 */
|
|
if (((j - 0x400d0000) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3) != 0)
|
|
return sgn * huge * huge; /* overflow */
|
|
else
|
|
{
|
|
if (p_l + ovt > z - p_h)
|
|
return sgn * huge * huge; /* overflow */
|
|
}
|
|
}
|
|
else if ((j & 0x7fffffff) >= 0x400d01b9) /* z <= -16495 */
|
|
{
|
|
/* z < -16495 */
|
|
if (((j - 0xc00d01bc) | o.parts32.w1 | o.parts32.w2 | o.parts32.w3)
|
|
!= 0)
|
|
return sgn * tiny * tiny; /* underflow */
|
|
else
|
|
{
|
|
if (p_l <= z - p_h)
|
|
return sgn * tiny * tiny; /* underflow */
|
|
}
|
|
}
|
|
/* compute 2**(p_h+p_l) */
|
|
i = j & 0x7fffffff;
|
|
k = (i >> 16) - 0x3fff;
|
|
n = 0;
|
|
if (i > 0x3ffe0000)
|
|
{ /* if |z| > 0.5, set n = [z+0.5] */
|
|
n = floorl (z + L(0.5));
|
|
t = n;
|
|
p_h -= t;
|
|
}
|
|
t = p_l + p_h;
|
|
o.value = t;
|
|
o.parts32.w3 = 0;
|
|
o.parts32.w2 &= 0xf8000000;
|
|
t = o.value;
|
|
u = t * lg2_h;
|
|
v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
|
|
z = u + v;
|
|
w = v - (z - u);
|
|
/* exp(z) */
|
|
t = z * z;
|
|
u = PN[0] + t * (PN[1] + t * (PN[2] + t * (PN[3] + t * PN[4])));
|
|
v = PD[0] + t * (PD[1] + t * (PD[2] + t * (PD[3] + t)));
|
|
t1 = z - t * u / v;
|
|
r = (z * t1) / (t1 - two) - (w + z * w);
|
|
z = one - (r - z);
|
|
o.value = z;
|
|
j = o.parts32.w0;
|
|
j += (n << 16);
|
|
if ((j >> 16) <= 0)
|
|
{
|
|
z = __scalbnl (z, n); /* subnormal output */
|
|
_Float128 force_underflow = z * z;
|
|
math_force_eval (force_underflow);
|
|
}
|
|
else
|
|
{
|
|
o.parts32.w0 = j;
|
|
z = o.value;
|
|
}
|
|
return sgn * z;
|
|
}
|
|
strong_alias (__ieee754_powl, __powl_finite)
|