mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-13 14:50:17 +00:00
220622dde5
This patch adds a new macro, libm_alias_finite, to define all _finite symbol. It sets all _finite symbol as compat symbol based on its first version (obtained from the definition at built generated first-versions.h). The <fn>f128_finite symbols were introduced in GLIBC 2.26 and so need special treatment in code that is shared between long double and float128. It is done by adding a list, similar to internal symbol redifinition, on sysdeps/ieee754/float128/float128_private.h. Alpha also needs some tricky changes to ensure we still emit 2 compat symbols for sqrt(f). Passes buildmanyglibc. Co-authored-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> Reviewed-by: Siddhesh Poyarekar <siddhesh@sourceware.org>
129 lines
3.4 KiB
ArmAsm
129 lines
3.4 KiB
ArmAsm
/* ix87 specific implementation of arctanh function.
|
||
Copyright (C) 1996-2020 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
#include <machine/asm.h>
|
||
#include <libm-alias-finite.h>
|
||
|
||
.section .rodata
|
||
|
||
.align ALIGNARG(4)
|
||
/* Please note that we use double values for 0.5 and 1.0. These
|
||
numbers have exact representations and so we don't get accuracy
|
||
problems. The advantage is that the code is simpler. */
|
||
.type half,@object
|
||
half: .double 0.5
|
||
ASM_SIZE_DIRECTIVE(half)
|
||
.type one,@object
|
||
one: .double 1.0
|
||
ASM_SIZE_DIRECTIVE(one)
|
||
/* It is not important that this constant is precise. It is only
|
||
a value which is known to be on the safe side for using the
|
||
fyl2xp1 instruction. */
|
||
.type limit,@object
|
||
limit: .double 0.29
|
||
ASM_SIZE_DIRECTIVE(limit)
|
||
.align ALIGNARG(4)
|
||
.type ln2_2,@object
|
||
ln2_2: .tfloat 0.3465735902799726547086160
|
||
ASM_SIZE_DIRECTIVE(ln2_2)
|
||
|
||
#ifdef PIC
|
||
#define MO(op) op##@GOTOFF(%edx)
|
||
#else
|
||
#define MO(op) op
|
||
#endif
|
||
|
||
.text
|
||
ENTRY(__ieee754_atanhl)
|
||
movl 12(%esp), %ecx
|
||
|
||
movl %ecx, %eax
|
||
andl $0x7fff, %eax
|
||
cmpl $0x7fff, %eax
|
||
je 5f
|
||
cmpl $0x3fdf, %eax
|
||
jge 7f
|
||
// Exponent below -32; return x, with underflow if subnormal.
|
||
fldt 4(%esp)
|
||
cmpl $0, %eax
|
||
jne 8f
|
||
fld %st(0)
|
||
fmul %st(0)
|
||
fstp %st(0)
|
||
8: ret
|
||
7:
|
||
|
||
#ifdef PIC
|
||
LOAD_PIC_REG (dx)
|
||
#endif
|
||
|
||
andl $0x8000, %ecx // ECX == 0 iff X >= 0
|
||
|
||
fldt MO(ln2_2) // 0.5*ln2
|
||
xorl %ecx, 12(%esp)
|
||
fldt 4(%esp) // |x| : 0.5*ln2
|
||
fcoml MO(half) // |x| : 0.5*ln2
|
||
fld %st(0) // |x| : |x| : 0.5*ln2
|
||
fnstsw // |x| : |x| : 0.5*ln2
|
||
sahf
|
||
jae 2f
|
||
fadd %st, %st(1) // |x| : 2*|x| : 0.5*ln2
|
||
fld %st // |x| : |x| : 2*|x| : 0.5*ln2
|
||
fsubrl MO(one) // 1-|x| : |x| : 2*|x| : 0.5*ln2
|
||
fxch // |x| : 1-|x| : 2*|x| : 0.5*ln2
|
||
fmul %st(2) // 2*|x|^2 : 1-|x| : 2*|x| : 0.5*ln2
|
||
fdivp // (2*|x|^2)/(1-|x|) : 2*|x| : 0.5*ln2
|
||
faddp // 2*|x|+(2*|x|^2)/(1-|x|) : 0.5*ln2
|
||
fcoml MO(limit) // 2*|x|+(2*|x|^2)/(1-|x|) : 0.5*ln2
|
||
fnstsw // 2*|x|+(2*|x|^2)/(1-|x|) : 0.5*ln2
|
||
sahf
|
||
jae 4f
|
||
fyl2xp1 // 0.5*ln2*ld(1+2*|x|+(2*|x|^2)/(1-|x|))
|
||
jecxz 3f
|
||
fchs // 0.5*ln2*ld(1+2*x+(2*x^2)/(1-x))
|
||
3: ret
|
||
|
||
.align ALIGNARG(4)
|
||
4: faddl MO(one) // 1+2*|x|+(2*|x|^2)/(1-|x|) : 0.5*ln2
|
||
fyl2x // 0.5*ln2*ld(1+2*|x|+(2*|x|^2)/(1-|x|))
|
||
jecxz 3f
|
||
fchs // 0.5*ln2*ld(1+2*x+(2*x^2)/(1-x))
|
||
3: ret
|
||
|
||
.align ALIGNARG(4)
|
||
2: faddl MO(one) // 1+|x| : |x| : 0.5*ln2
|
||
fxch // |x| : 1+|x| : 0.5*ln2
|
||
fsubrl MO(one) // 1-|x| : 1+|x| : 0.5*ln2
|
||
fdivrp // (1+|x|)/(1-|x|) : 0.5*ln2
|
||
fyl2x // 0.5*ln2*ld((1+|x|)/(1-|x|))
|
||
jecxz 3f
|
||
fchs // 0.5*ln2*ld((1+x)/(1-x))
|
||
3: ret
|
||
|
||
// x == NaN or <EFBFBD>Inf
|
||
5: cmpl $0x80000000, 8(%esp)
|
||
ja 6f
|
||
cmpl $0, 4(%esp)
|
||
je 7b
|
||
6: fldt 4(%esp)
|
||
fadd %st(0)
|
||
ret
|
||
END(__ieee754_atanhl)
|
||
libm_alias_finite (__ieee754_atanhl, __atanhl)
|