glibc/sysdeps/ieee754/ldbl-96/s_scalblnl.c
Joseph Myers 34e93d6c76 Fix ldbl-96 scalblnl for subnormal arguments (bug 17834).
The ldbl-96 implementation of scalblnl (used for x86_64 and ia64) is
incorrect for subnormal arguments (this is a separate bug from bug
17803, which is about underflowing results).  There are two problems
with the adjustments of subnormal arguments: the "two63" variable
multiplied by is actually 0x1p52L not 0x1p63L, so is insufficient to
make values normal, and then GET_LDOUBLE_EXP(es,x), used to extract
the new exponent, extracts it into a variable that isn't used, while
the value taken to by the new exponent is wrongly taken from the high
part of the mantissa before the adjustment (hx).  This patch fixes
both those problems and adds appropriate tests.

Tested for x86_64.

	[BZ #17834]
	* sysdeps/ieee754/ldbl-96/s_scalblnl.c (two63): Change value to
	0x1p63L.
	(__scalblnl): Get new exponent of adjusted subnormal value from ES
	not HX.
	* math/libm-test.inc (scalbn_test_data): Add more tests.
	(scalbln_test_data): Likewise.
2015-01-12 22:34:58 +00:00

61 lines
1.8 KiB
C

/* s_scalbnl.c -- long double version of s_scalbn.c.
* Conversion to long double by Ulrich Drepper,
* Cygnus Support, drepper@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* scalbnl (long double x, int n)
* scalbnl(x,n) returns x* 2**n computed by exponent
* manipulation rather than by actually performing an
* exponentiation or a multiplication.
*/
#include <math.h>
#include <math_private.h>
static const long double
two63 = 0x1p63L,
twom63 = 1.08420217248550443400e-19,
huge = 1.0e+4900L,
tiny = 1.0e-4900L;
long double
__scalblnl (long double x, long int n)
{
int32_t k,es,hx,lx;
GET_LDOUBLE_WORDS(es,hx,lx,x);
k = es&0x7fff; /* extract exponent */
if (__builtin_expect(k==0, 0)) { /* 0 or subnormal x */
if ((lx|(hx&0x7fffffff))==0) return x; /* +-0 */
x *= two63;
GET_LDOUBLE_EXP(es,x);
k = (es&0x7fff) - 63;
}
if (__builtin_expect(k==0x7fff, 0)) return x+x; /* NaN or Inf */
if (__builtin_expect(n< -50000, 0))
return tiny*__copysignl(tiny,x);
if (__builtin_expect(n> 50000 || k+n > 0x7ffe, 0))
return huge*__copysignl(huge,x); /* overflow */
/* Now k and n are bounded we know that k = k+n does not
overflow. */
k = k+n;
if (__builtin_expect(k > 0, 1)) /* normal result */
{SET_LDOUBLE_EXP(x,(es&0x8000)|k); return x;}
if (k <= -63)
return tiny*__copysignl(tiny,x); /*underflow*/
k += 63; /* subnormal result */
SET_LDOUBLE_EXP(x,(es&0x8000)|k);
return x*twom63;
}