mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 22:10:13 +00:00
ba33937be2
This is updated version of the572bd547d5
(reverted by40ebfd016a
) that fixes the _dl_next_tls_modid issues. This issue with572bd547d5
patch is the DTV entry will be only update on dl_open_worker() with the update_tls_slotinfo() call after all dependencies are being processed by _dl_map_object_deps(). However _dl_map_object_deps() itself might call _dl_next_tls_modid(), and since the _dl_tls_dtv_slotinfo_list::map is not yet set the entry will be wrongly reused. This patch fixes by renaming the _dl_next_tls_modid() function to _dl_assign_tls_modid() and by passing the link_map so it can set the slotinfo value so a subsequente _dl_next_tls_modid() call will see the entry as allocated. The intermediary value is cleared up on remove_slotinfo() for the case a library fails to load with RTLD_NOW. This patch fixes BZ #27135. Checked on x86_64-linux-gnu. Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
877 lines
26 KiB
C
877 lines
26 KiB
C
/* Close a shared object opened by `_dl_open'.
|
|
Copyright (C) 1996-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <assert.h>
|
|
#include <dlfcn.h>
|
|
#include <errno.h>
|
|
#include <libintl.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <libc-lock.h>
|
|
#include <ldsodefs.h>
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#include <sysdep-cancel.h>
|
|
#include <tls.h>
|
|
#include <stap-probe.h>
|
|
|
|
#include <dl-unmap-segments.h>
|
|
|
|
|
|
/* Type of the constructor functions. */
|
|
typedef void (*fini_t) (void);
|
|
|
|
|
|
/* Special l_idx value used to indicate which objects remain loaded. */
|
|
#define IDX_STILL_USED -1
|
|
|
|
|
|
/* Returns true we an non-empty was found. */
|
|
static bool
|
|
remove_slotinfo (size_t idx, struct dtv_slotinfo_list *listp, size_t disp,
|
|
bool should_be_there)
|
|
{
|
|
if (idx - disp >= listp->len)
|
|
{
|
|
if (listp->next == NULL)
|
|
{
|
|
/* The index is not actually valid in the slotinfo list,
|
|
because this object was closed before it was fully set
|
|
up due to some error. */
|
|
assert (! should_be_there);
|
|
}
|
|
else
|
|
{
|
|
if (remove_slotinfo (idx, listp->next, disp + listp->len,
|
|
should_be_there))
|
|
return true;
|
|
|
|
/* No non-empty entry. Search from the end of this element's
|
|
slotinfo array. */
|
|
idx = disp + listp->len;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
struct link_map *old_map = listp->slotinfo[idx - disp].map;
|
|
|
|
/* The entry might still be in its unused state if we are closing an
|
|
object that wasn't fully set up. */
|
|
if (__glibc_likely (old_map != NULL))
|
|
{
|
|
/* Mark the entry as unused. These can be read concurrently. */
|
|
atomic_store_relaxed (&listp->slotinfo[idx - disp].gen,
|
|
GL(dl_tls_generation) + 1);
|
|
atomic_store_relaxed (&listp->slotinfo[idx - disp].map, NULL);
|
|
}
|
|
|
|
/* If this is not the last currently used entry no need to look
|
|
further. */
|
|
if (idx != GL(dl_tls_max_dtv_idx))
|
|
{
|
|
/* There is an unused dtv entry in the middle. */
|
|
GL(dl_tls_dtv_gaps) = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
while (idx - disp > (disp == 0 ? 1 + GL(dl_tls_static_nelem) : 0))
|
|
{
|
|
--idx;
|
|
|
|
if (listp->slotinfo[idx - disp].map != NULL)
|
|
{
|
|
/* Found a new last used index. This can be read concurrently. */
|
|
atomic_store_relaxed (&GL(dl_tls_max_dtv_idx), idx);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/* No non-entry in this list element. */
|
|
return false;
|
|
}
|
|
|
|
/* Invoke dstructors for CLOSURE (a struct link_map *). Called with
|
|
exception handling temporarily disabled, to make errors fatal. */
|
|
static void
|
|
call_destructors (void *closure)
|
|
{
|
|
struct link_map *map = closure;
|
|
|
|
if (map->l_info[DT_FINI_ARRAY] != NULL)
|
|
{
|
|
ElfW(Addr) *array =
|
|
(ElfW(Addr) *) (map->l_addr
|
|
+ map->l_info[DT_FINI_ARRAY]->d_un.d_ptr);
|
|
unsigned int sz = (map->l_info[DT_FINI_ARRAYSZ]->d_un.d_val
|
|
/ sizeof (ElfW(Addr)));
|
|
|
|
while (sz-- > 0)
|
|
((fini_t) array[sz]) ();
|
|
}
|
|
|
|
/* Next try the old-style destructor. */
|
|
if (map->l_info[DT_FINI] != NULL)
|
|
DL_CALL_DT_FINI (map, ((void *) map->l_addr
|
|
+ map->l_info[DT_FINI]->d_un.d_ptr));
|
|
}
|
|
|
|
void
|
|
_dl_close_worker (struct link_map *map, bool force)
|
|
{
|
|
/* One less direct use. */
|
|
--map->l_direct_opencount;
|
|
|
|
/* If _dl_close is called recursively (some destructor call dlclose),
|
|
just record that the parent _dl_close will need to do garbage collection
|
|
again and return. */
|
|
static enum { not_pending, pending, rerun } dl_close_state;
|
|
|
|
if (map->l_direct_opencount > 0 || map->l_type != lt_loaded
|
|
|| dl_close_state != not_pending)
|
|
{
|
|
if (map->l_direct_opencount == 0 && map->l_type == lt_loaded)
|
|
dl_close_state = rerun;
|
|
|
|
/* There are still references to this object. Do nothing more. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("\nclosing file=%s; direct_opencount=%u\n",
|
|
map->l_name, map->l_direct_opencount);
|
|
|
|
return;
|
|
}
|
|
|
|
Lmid_t nsid = map->l_ns;
|
|
struct link_namespaces *ns = &GL(dl_ns)[nsid];
|
|
|
|
retry:
|
|
dl_close_state = pending;
|
|
|
|
bool any_tls = false;
|
|
const unsigned int nloaded = ns->_ns_nloaded;
|
|
char used[nloaded];
|
|
char done[nloaded];
|
|
struct link_map *maps[nloaded];
|
|
|
|
/* Run over the list and assign indexes to the link maps and enter
|
|
them into the MAPS array. */
|
|
int idx = 0;
|
|
for (struct link_map *l = ns->_ns_loaded; l != NULL; l = l->l_next)
|
|
{
|
|
l->l_idx = idx;
|
|
maps[idx] = l;
|
|
++idx;
|
|
|
|
}
|
|
assert (idx == nloaded);
|
|
|
|
/* Prepare the bitmaps. */
|
|
memset (used, '\0', sizeof (used));
|
|
memset (done, '\0', sizeof (done));
|
|
|
|
/* Keep track of the lowest index link map we have covered already. */
|
|
int done_index = -1;
|
|
while (++done_index < nloaded)
|
|
{
|
|
struct link_map *l = maps[done_index];
|
|
|
|
if (done[done_index])
|
|
/* Already handled. */
|
|
continue;
|
|
|
|
/* Check whether this object is still used. */
|
|
if (l->l_type == lt_loaded
|
|
&& l->l_direct_opencount == 0
|
|
&& !l->l_nodelete_active
|
|
/* See CONCURRENCY NOTES in cxa_thread_atexit_impl.c to know why
|
|
acquire is sufficient and correct. */
|
|
&& atomic_load_acquire (&l->l_tls_dtor_count) == 0
|
|
&& !used[done_index])
|
|
continue;
|
|
|
|
/* We need this object and we handle it now. */
|
|
done[done_index] = 1;
|
|
used[done_index] = 1;
|
|
/* Signal the object is still needed. */
|
|
l->l_idx = IDX_STILL_USED;
|
|
|
|
/* Mark all dependencies as used. */
|
|
if (l->l_initfini != NULL)
|
|
{
|
|
/* We are always the zeroth entry, and since we don't include
|
|
ourselves in the dependency analysis start at 1. */
|
|
struct link_map **lp = &l->l_initfini[1];
|
|
while (*lp != NULL)
|
|
{
|
|
if ((*lp)->l_idx != IDX_STILL_USED)
|
|
{
|
|
assert ((*lp)->l_idx >= 0 && (*lp)->l_idx < nloaded);
|
|
|
|
if (!used[(*lp)->l_idx])
|
|
{
|
|
used[(*lp)->l_idx] = 1;
|
|
/* If we marked a new object as used, and we've
|
|
already processed it, then we need to go back
|
|
and process again from that point forward to
|
|
ensure we keep all of its dependencies also. */
|
|
if ((*lp)->l_idx - 1 < done_index)
|
|
done_index = (*lp)->l_idx - 1;
|
|
}
|
|
}
|
|
|
|
++lp;
|
|
}
|
|
}
|
|
/* And the same for relocation dependencies. */
|
|
if (l->l_reldeps != NULL)
|
|
for (unsigned int j = 0; j < l->l_reldeps->act; ++j)
|
|
{
|
|
struct link_map *jmap = l->l_reldeps->list[j];
|
|
|
|
if (jmap->l_idx != IDX_STILL_USED)
|
|
{
|
|
assert (jmap->l_idx >= 0 && jmap->l_idx < nloaded);
|
|
|
|
if (!used[jmap->l_idx])
|
|
{
|
|
used[jmap->l_idx] = 1;
|
|
if (jmap->l_idx - 1 < done_index)
|
|
done_index = jmap->l_idx - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Sort the entries. We can skip looking for the binary itself which is
|
|
at the front of the search list for the main namespace. */
|
|
_dl_sort_maps (maps + (nsid == LM_ID_BASE), nloaded - (nsid == LM_ID_BASE),
|
|
used + (nsid == LM_ID_BASE), true);
|
|
|
|
/* Call all termination functions at once. */
|
|
#ifdef SHARED
|
|
bool do_audit = GLRO(dl_naudit) > 0 && !ns->_ns_loaded->l_auditing;
|
|
#endif
|
|
bool unload_any = false;
|
|
bool scope_mem_left = false;
|
|
unsigned int unload_global = 0;
|
|
unsigned int first_loaded = ~0;
|
|
for (unsigned int i = 0; i < nloaded; ++i)
|
|
{
|
|
struct link_map *imap = maps[i];
|
|
|
|
/* All elements must be in the same namespace. */
|
|
assert (imap->l_ns == nsid);
|
|
|
|
if (!used[i])
|
|
{
|
|
assert (imap->l_type == lt_loaded && !imap->l_nodelete_active);
|
|
|
|
/* Call its termination function. Do not do it for
|
|
half-cooked objects. Temporarily disable exception
|
|
handling, so that errors are fatal. */
|
|
if (imap->l_init_called)
|
|
{
|
|
/* When debugging print a message first. */
|
|
if (__builtin_expect (GLRO(dl_debug_mask) & DL_DEBUG_IMPCALLS,
|
|
0))
|
|
_dl_debug_printf ("\ncalling fini: %s [%lu]\n\n",
|
|
imap->l_name, nsid);
|
|
|
|
if (imap->l_info[DT_FINI_ARRAY] != NULL
|
|
|| imap->l_info[DT_FINI] != NULL)
|
|
_dl_catch_exception (NULL, call_destructors, imap);
|
|
}
|
|
|
|
#ifdef SHARED
|
|
/* Auditing checkpoint: we remove an object. */
|
|
if (__glibc_unlikely (do_audit))
|
|
{
|
|
struct audit_ifaces *afct = GLRO(dl_audit);
|
|
for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
|
|
{
|
|
if (afct->objclose != NULL)
|
|
{
|
|
struct auditstate *state
|
|
= link_map_audit_state (imap, cnt);
|
|
/* Return value is ignored. */
|
|
(void) afct->objclose (&state->cookie);
|
|
}
|
|
|
|
afct = afct->next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* This object must not be used anymore. */
|
|
imap->l_removed = 1;
|
|
|
|
/* We indeed have an object to remove. */
|
|
unload_any = true;
|
|
|
|
if (imap->l_global)
|
|
++unload_global;
|
|
|
|
/* Remember where the first dynamically loaded object is. */
|
|
if (i < first_loaded)
|
|
first_loaded = i;
|
|
}
|
|
/* Else used[i]. */
|
|
else if (imap->l_type == lt_loaded)
|
|
{
|
|
struct r_scope_elem *new_list = NULL;
|
|
|
|
if (imap->l_searchlist.r_list == NULL && imap->l_initfini != NULL)
|
|
{
|
|
/* The object is still used. But one of the objects we are
|
|
unloading right now is responsible for loading it. If
|
|
the current object does not have it's own scope yet we
|
|
have to create one. This has to be done before running
|
|
the finalizers.
|
|
|
|
To do this count the number of dependencies. */
|
|
unsigned int cnt;
|
|
for (cnt = 1; imap->l_initfini[cnt] != NULL; ++cnt)
|
|
;
|
|
|
|
/* We simply reuse the l_initfini list. */
|
|
imap->l_searchlist.r_list = &imap->l_initfini[cnt + 1];
|
|
imap->l_searchlist.r_nlist = cnt;
|
|
|
|
new_list = &imap->l_searchlist;
|
|
}
|
|
|
|
/* Count the number of scopes which remain after the unload.
|
|
When we add the local search list count it. Always add
|
|
one for the terminating NULL pointer. */
|
|
size_t remain = (new_list != NULL) + 1;
|
|
bool removed_any = false;
|
|
for (size_t cnt = 0; imap->l_scope[cnt] != NULL; ++cnt)
|
|
/* This relies on l_scope[] entries being always set either
|
|
to its own l_symbolic_searchlist address, or some map's
|
|
l_searchlist address. */
|
|
if (imap->l_scope[cnt] != &imap->l_symbolic_searchlist)
|
|
{
|
|
struct link_map *tmap = (struct link_map *)
|
|
((char *) imap->l_scope[cnt]
|
|
- offsetof (struct link_map, l_searchlist));
|
|
assert (tmap->l_ns == nsid);
|
|
if (tmap->l_idx == IDX_STILL_USED)
|
|
++remain;
|
|
else
|
|
removed_any = true;
|
|
}
|
|
else
|
|
++remain;
|
|
|
|
if (removed_any)
|
|
{
|
|
/* Always allocate a new array for the scope. This is
|
|
necessary since we must be able to determine the last
|
|
user of the current array. If possible use the link map's
|
|
memory. */
|
|
size_t new_size;
|
|
struct r_scope_elem **newp;
|
|
|
|
#define SCOPE_ELEMS(imap) \
|
|
(sizeof (imap->l_scope_mem) / sizeof (imap->l_scope_mem[0]))
|
|
|
|
if (imap->l_scope != imap->l_scope_mem
|
|
&& remain < SCOPE_ELEMS (imap))
|
|
{
|
|
new_size = SCOPE_ELEMS (imap);
|
|
newp = imap->l_scope_mem;
|
|
}
|
|
else
|
|
{
|
|
new_size = imap->l_scope_max;
|
|
newp = (struct r_scope_elem **)
|
|
malloc (new_size * sizeof (struct r_scope_elem *));
|
|
if (newp == NULL)
|
|
_dl_signal_error (ENOMEM, "dlclose", NULL,
|
|
N_("cannot create scope list"));
|
|
}
|
|
|
|
/* Copy over the remaining scope elements. */
|
|
remain = 0;
|
|
for (size_t cnt = 0; imap->l_scope[cnt] != NULL; ++cnt)
|
|
{
|
|
if (imap->l_scope[cnt] != &imap->l_symbolic_searchlist)
|
|
{
|
|
struct link_map *tmap = (struct link_map *)
|
|
((char *) imap->l_scope[cnt]
|
|
- offsetof (struct link_map, l_searchlist));
|
|
if (tmap->l_idx != IDX_STILL_USED)
|
|
{
|
|
/* Remove the scope. Or replace with own map's
|
|
scope. */
|
|
if (new_list != NULL)
|
|
{
|
|
newp[remain++] = new_list;
|
|
new_list = NULL;
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
newp[remain++] = imap->l_scope[cnt];
|
|
}
|
|
newp[remain] = NULL;
|
|
|
|
struct r_scope_elem **old = imap->l_scope;
|
|
|
|
imap->l_scope = newp;
|
|
|
|
/* No user anymore, we can free it now. */
|
|
if (old != imap->l_scope_mem)
|
|
{
|
|
if (_dl_scope_free (old))
|
|
/* If _dl_scope_free used THREAD_GSCOPE_WAIT (),
|
|
no need to repeat it. */
|
|
scope_mem_left = false;
|
|
}
|
|
else
|
|
scope_mem_left = true;
|
|
|
|
imap->l_scope_max = new_size;
|
|
}
|
|
else if (new_list != NULL)
|
|
{
|
|
/* We didn't change the scope array, so reset the search
|
|
list. */
|
|
imap->l_searchlist.r_list = NULL;
|
|
imap->l_searchlist.r_nlist = 0;
|
|
}
|
|
|
|
/* The loader is gone, so mark the object as not having one.
|
|
Note: l_idx != IDX_STILL_USED -> object will be removed. */
|
|
if (imap->l_loader != NULL
|
|
&& imap->l_loader->l_idx != IDX_STILL_USED)
|
|
imap->l_loader = NULL;
|
|
|
|
/* Remember where the first dynamically loaded object is. */
|
|
if (i < first_loaded)
|
|
first_loaded = i;
|
|
}
|
|
}
|
|
|
|
/* If there are no objects to unload, do nothing further. */
|
|
if (!unload_any)
|
|
goto out;
|
|
|
|
#ifdef SHARED
|
|
/* Auditing checkpoint: we will start deleting objects. */
|
|
if (__glibc_unlikely (do_audit))
|
|
{
|
|
struct link_map *head = ns->_ns_loaded;
|
|
struct audit_ifaces *afct = GLRO(dl_audit);
|
|
/* Do not call the functions for any auditing object. */
|
|
if (head->l_auditing == 0)
|
|
{
|
|
for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
|
|
{
|
|
if (afct->activity != NULL)
|
|
{
|
|
struct auditstate *state = link_map_audit_state (head, cnt);
|
|
afct->activity (&state->cookie, LA_ACT_DELETE);
|
|
}
|
|
|
|
afct = afct->next;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Notify the debugger we are about to remove some loaded objects. */
|
|
struct r_debug *r = _dl_debug_initialize (0, nsid);
|
|
r->r_state = RT_DELETE;
|
|
_dl_debug_state ();
|
|
LIBC_PROBE (unmap_start, 2, nsid, r);
|
|
|
|
if (unload_global)
|
|
{
|
|
/* Some objects are in the global scope list. Remove them. */
|
|
struct r_scope_elem *ns_msl = ns->_ns_main_searchlist;
|
|
unsigned int i;
|
|
unsigned int j = 0;
|
|
unsigned int cnt = ns_msl->r_nlist;
|
|
|
|
while (cnt > 0 && ns_msl->r_list[cnt - 1]->l_removed)
|
|
--cnt;
|
|
|
|
if (cnt + unload_global == ns_msl->r_nlist)
|
|
/* Speed up removing most recently added objects. */
|
|
j = cnt;
|
|
else
|
|
for (i = 0; i < cnt; i++)
|
|
if (ns_msl->r_list[i]->l_removed == 0)
|
|
{
|
|
if (i != j)
|
|
ns_msl->r_list[j] = ns_msl->r_list[i];
|
|
j++;
|
|
}
|
|
ns_msl->r_nlist = j;
|
|
}
|
|
|
|
if (!RTLD_SINGLE_THREAD_P
|
|
&& (unload_global
|
|
|| scope_mem_left
|
|
|| (GL(dl_scope_free_list) != NULL
|
|
&& GL(dl_scope_free_list)->count)))
|
|
{
|
|
THREAD_GSCOPE_WAIT ();
|
|
|
|
/* Now we can free any queued old scopes. */
|
|
struct dl_scope_free_list *fsl = GL(dl_scope_free_list);
|
|
if (fsl != NULL)
|
|
while (fsl->count > 0)
|
|
free (fsl->list[--fsl->count]);
|
|
}
|
|
|
|
size_t tls_free_start;
|
|
size_t tls_free_end;
|
|
tls_free_start = tls_free_end = NO_TLS_OFFSET;
|
|
|
|
/* We modify the list of loaded objects. */
|
|
__rtld_lock_lock_recursive (GL(dl_load_write_lock));
|
|
|
|
/* Check each element of the search list to see if all references to
|
|
it are gone. */
|
|
for (unsigned int i = first_loaded; i < nloaded; ++i)
|
|
{
|
|
struct link_map *imap = maps[i];
|
|
if (!used[i])
|
|
{
|
|
assert (imap->l_type == lt_loaded);
|
|
|
|
/* That was the last reference, and this was a dlopen-loaded
|
|
object. We can unmap it. */
|
|
|
|
/* Remove the object from the dtv slotinfo array if it uses TLS. */
|
|
if (__glibc_unlikely (imap->l_tls_blocksize > 0))
|
|
{
|
|
any_tls = true;
|
|
|
|
if (GL(dl_tls_dtv_slotinfo_list) != NULL
|
|
&& ! remove_slotinfo (imap->l_tls_modid,
|
|
GL(dl_tls_dtv_slotinfo_list), 0,
|
|
imap->l_init_called))
|
|
/* All dynamically loaded modules with TLS are unloaded. */
|
|
/* Can be read concurrently. */
|
|
atomic_store_relaxed (&GL(dl_tls_max_dtv_idx),
|
|
GL(dl_tls_static_nelem));
|
|
|
|
if (imap->l_tls_offset != NO_TLS_OFFSET
|
|
&& imap->l_tls_offset != FORCED_DYNAMIC_TLS_OFFSET)
|
|
{
|
|
/* Collect a contiguous chunk built from the objects in
|
|
this search list, going in either direction. When the
|
|
whole chunk is at the end of the used area then we can
|
|
reclaim it. */
|
|
#if TLS_TCB_AT_TP
|
|
if (tls_free_start == NO_TLS_OFFSET
|
|
|| (size_t) imap->l_tls_offset == tls_free_start)
|
|
{
|
|
/* Extend the contiguous chunk being reclaimed. */
|
|
tls_free_start
|
|
= imap->l_tls_offset - imap->l_tls_blocksize;
|
|
|
|
if (tls_free_end == NO_TLS_OFFSET)
|
|
tls_free_end = imap->l_tls_offset;
|
|
}
|
|
else if (imap->l_tls_offset - imap->l_tls_blocksize
|
|
== tls_free_end)
|
|
/* Extend the chunk backwards. */
|
|
tls_free_end = imap->l_tls_offset;
|
|
else
|
|
{
|
|
/* This isn't contiguous with the last chunk freed.
|
|
One of them will be leaked unless we can free
|
|
one block right away. */
|
|
if (tls_free_end == GL(dl_tls_static_used))
|
|
{
|
|
GL(dl_tls_static_used) = tls_free_start;
|
|
tls_free_end = imap->l_tls_offset;
|
|
tls_free_start
|
|
= tls_free_end - imap->l_tls_blocksize;
|
|
}
|
|
else if ((size_t) imap->l_tls_offset
|
|
== GL(dl_tls_static_used))
|
|
GL(dl_tls_static_used)
|
|
= imap->l_tls_offset - imap->l_tls_blocksize;
|
|
else if (tls_free_end < (size_t) imap->l_tls_offset)
|
|
{
|
|
/* We pick the later block. It has a chance to
|
|
be freed. */
|
|
tls_free_end = imap->l_tls_offset;
|
|
tls_free_start
|
|
= tls_free_end - imap->l_tls_blocksize;
|
|
}
|
|
}
|
|
#elif TLS_DTV_AT_TP
|
|
if (tls_free_start == NO_TLS_OFFSET)
|
|
{
|
|
tls_free_start = imap->l_tls_firstbyte_offset;
|
|
tls_free_end = (imap->l_tls_offset
|
|
+ imap->l_tls_blocksize);
|
|
}
|
|
else if (imap->l_tls_firstbyte_offset == tls_free_end)
|
|
/* Extend the contiguous chunk being reclaimed. */
|
|
tls_free_end = imap->l_tls_offset + imap->l_tls_blocksize;
|
|
else if (imap->l_tls_offset + imap->l_tls_blocksize
|
|
== tls_free_start)
|
|
/* Extend the chunk backwards. */
|
|
tls_free_start = imap->l_tls_firstbyte_offset;
|
|
/* This isn't contiguous with the last chunk freed.
|
|
One of them will be leaked unless we can free
|
|
one block right away. */
|
|
else if (imap->l_tls_offset + imap->l_tls_blocksize
|
|
== GL(dl_tls_static_used))
|
|
GL(dl_tls_static_used) = imap->l_tls_firstbyte_offset;
|
|
else if (tls_free_end == GL(dl_tls_static_used))
|
|
{
|
|
GL(dl_tls_static_used) = tls_free_start;
|
|
tls_free_start = imap->l_tls_firstbyte_offset;
|
|
tls_free_end = imap->l_tls_offset + imap->l_tls_blocksize;
|
|
}
|
|
else if (tls_free_end < imap->l_tls_firstbyte_offset)
|
|
{
|
|
/* We pick the later block. It has a chance to
|
|
be freed. */
|
|
tls_free_start = imap->l_tls_firstbyte_offset;
|
|
tls_free_end = imap->l_tls_offset + imap->l_tls_blocksize;
|
|
}
|
|
#else
|
|
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Reset unique symbols if forced. */
|
|
if (force)
|
|
{
|
|
struct unique_sym_table *tab = &ns->_ns_unique_sym_table;
|
|
__rtld_lock_lock_recursive (tab->lock);
|
|
struct unique_sym *entries = tab->entries;
|
|
if (entries != NULL)
|
|
{
|
|
size_t idx, size = tab->size;
|
|
for (idx = 0; idx < size; ++idx)
|
|
{
|
|
/* Clear unique symbol entries that belong to this
|
|
object. */
|
|
if (entries[idx].name != NULL
|
|
&& entries[idx].map == imap)
|
|
{
|
|
entries[idx].name = NULL;
|
|
entries[idx].hashval = 0;
|
|
tab->n_elements--;
|
|
}
|
|
}
|
|
}
|
|
__rtld_lock_unlock_recursive (tab->lock);
|
|
}
|
|
|
|
/* We can unmap all the maps at once. We determined the
|
|
start address and length when we loaded the object and
|
|
the `munmap' call does the rest. */
|
|
DL_UNMAP (imap);
|
|
|
|
/* Finally, unlink the data structure and free it. */
|
|
#if DL_NNS == 1
|
|
/* The assert in the (imap->l_prev == NULL) case gives
|
|
the compiler license to warn that NS points outside
|
|
the dl_ns array bounds in that case (as nsid != LM_ID_BASE
|
|
is tantamount to nsid >= DL_NNS). That should be impossible
|
|
in this configuration, so just assert about it instead. */
|
|
assert (nsid == LM_ID_BASE);
|
|
assert (imap->l_prev != NULL);
|
|
#else
|
|
if (imap->l_prev == NULL)
|
|
{
|
|
assert (nsid != LM_ID_BASE);
|
|
ns->_ns_loaded = imap->l_next;
|
|
|
|
/* Update the pointer to the head of the list
|
|
we leave for debuggers to examine. */
|
|
r->r_map = (void *) ns->_ns_loaded;
|
|
}
|
|
else
|
|
#endif
|
|
imap->l_prev->l_next = imap->l_next;
|
|
|
|
--ns->_ns_nloaded;
|
|
if (imap->l_next != NULL)
|
|
imap->l_next->l_prev = imap->l_prev;
|
|
|
|
free (imap->l_versions);
|
|
if (imap->l_origin != (char *) -1)
|
|
free ((char *) imap->l_origin);
|
|
|
|
free (imap->l_reldeps);
|
|
|
|
/* Print debugging message. */
|
|
if (__glibc_unlikely (GLRO(dl_debug_mask) & DL_DEBUG_FILES))
|
|
_dl_debug_printf ("\nfile=%s [%lu]; destroying link map\n",
|
|
imap->l_name, imap->l_ns);
|
|
|
|
/* This name always is allocated. */
|
|
free (imap->l_name);
|
|
/* Remove the list with all the names of the shared object. */
|
|
|
|
struct libname_list *lnp = imap->l_libname;
|
|
do
|
|
{
|
|
struct libname_list *this = lnp;
|
|
lnp = lnp->next;
|
|
if (!this->dont_free)
|
|
free (this);
|
|
}
|
|
while (lnp != NULL);
|
|
|
|
/* Remove the searchlists. */
|
|
free (imap->l_initfini);
|
|
|
|
/* Remove the scope array if we allocated it. */
|
|
if (imap->l_scope != imap->l_scope_mem)
|
|
free (imap->l_scope);
|
|
|
|
if (imap->l_phdr_allocated)
|
|
free ((void *) imap->l_phdr);
|
|
|
|
if (imap->l_rpath_dirs.dirs != (void *) -1)
|
|
free (imap->l_rpath_dirs.dirs);
|
|
if (imap->l_runpath_dirs.dirs != (void *) -1)
|
|
free (imap->l_runpath_dirs.dirs);
|
|
|
|
/* Clear GL(dl_initfirst) when freeing its link_map memory. */
|
|
if (imap == GL(dl_initfirst))
|
|
GL(dl_initfirst) = NULL;
|
|
|
|
free (imap);
|
|
}
|
|
}
|
|
|
|
__rtld_lock_unlock_recursive (GL(dl_load_write_lock));
|
|
|
|
/* If we removed any object which uses TLS bump the generation counter. */
|
|
if (any_tls)
|
|
{
|
|
size_t newgen = GL(dl_tls_generation) + 1;
|
|
if (__glibc_unlikely (newgen == 0))
|
|
_dl_fatal_printf ("TLS generation counter wrapped! Please report as described in "REPORT_BUGS_TO".\n");
|
|
/* Can be read concurrently. */
|
|
atomic_store_relaxed (&GL(dl_tls_generation), newgen);
|
|
|
|
if (tls_free_end == GL(dl_tls_static_used))
|
|
GL(dl_tls_static_used) = tls_free_start;
|
|
}
|
|
|
|
#ifdef SHARED
|
|
/* Auditing checkpoint: we have deleted all objects. */
|
|
if (__glibc_unlikely (do_audit))
|
|
{
|
|
struct link_map *head = ns->_ns_loaded;
|
|
/* If head is NULL, the namespace has become empty, and the
|
|
audit interface does not give us a way to signal
|
|
LA_ACT_CONSISTENT for it because the first loaded module is
|
|
used to identify the namespace.
|
|
|
|
Furthermore, do not notify auditors of the cleanup of a
|
|
failed audit module loading attempt. */
|
|
if (head != NULL && head->l_auditing == 0)
|
|
{
|
|
struct audit_ifaces *afct = GLRO(dl_audit);
|
|
for (unsigned int cnt = 0; cnt < GLRO(dl_naudit); ++cnt)
|
|
{
|
|
if (afct->activity != NULL)
|
|
{
|
|
struct auditstate *state = link_map_audit_state (head, cnt);
|
|
afct->activity (&state->cookie, LA_ACT_CONSISTENT);
|
|
}
|
|
|
|
afct = afct->next;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (__builtin_expect (ns->_ns_loaded == NULL, 0)
|
|
&& nsid == GL(dl_nns) - 1)
|
|
do
|
|
--GL(dl_nns);
|
|
while (GL(dl_ns)[GL(dl_nns) - 1]._ns_loaded == NULL);
|
|
|
|
/* Notify the debugger those objects are finalized and gone. */
|
|
r->r_state = RT_CONSISTENT;
|
|
_dl_debug_state ();
|
|
LIBC_PROBE (unmap_complete, 2, nsid, r);
|
|
|
|
/* Recheck if we need to retry, release the lock. */
|
|
out:
|
|
if (dl_close_state == rerun)
|
|
goto retry;
|
|
|
|
dl_close_state = not_pending;
|
|
}
|
|
|
|
|
|
void
|
|
_dl_close (void *_map)
|
|
{
|
|
struct link_map *map = _map;
|
|
|
|
/* We must take the lock to examine the contents of map and avoid
|
|
concurrent dlopens. */
|
|
__rtld_lock_lock_recursive (GL(dl_load_lock));
|
|
|
|
/* At this point we are guaranteed nobody else is touching the list of
|
|
loaded maps, but a concurrent dlclose might have freed our map
|
|
before we took the lock. There is no way to detect this (see below)
|
|
so we proceed assuming this isn't the case. First see whether we
|
|
can remove the object at all. */
|
|
if (__glibc_unlikely (map->l_nodelete_active))
|
|
{
|
|
/* Nope. Do nothing. */
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
return;
|
|
}
|
|
|
|
/* At present this is an unreliable check except in the case where the
|
|
caller has recursively called dlclose and we are sure the link map
|
|
has not been freed. In a non-recursive dlclose the map itself
|
|
might have been freed and this access is potentially a data race
|
|
with whatever other use this memory might have now, or worse we
|
|
might silently corrupt memory if it looks enough like a link map.
|
|
POSIX has language in dlclose that appears to guarantee that this
|
|
should be a detectable case and given that dlclose should be threadsafe
|
|
we need this to be a reliable detection.
|
|
This is bug 20990. */
|
|
if (__builtin_expect (map->l_direct_opencount, 1) == 0)
|
|
{
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
_dl_signal_error (0, map->l_name, NULL, N_("shared object not open"));
|
|
}
|
|
|
|
_dl_close_worker (map, false);
|
|
|
|
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
|
}
|