glibc/math/gen-libm-test.pl
Joseph Myers 8e554659ad Add test infrastructure for narrowing libm functions.
This patch continues preparations for adding TS 18661-1 narrowing libm
functions by adding the required testsuite infrastructure to test such
functions through the libm-test infrastructure.

That infrastructure is based around testing for a single type, FLOAT.
For the narrowing functions, FLOAT, the "main" type for testing, is
the function return type; the argument type is ARG_FLOAT.  This is
consistent with how the code built once for each type,
libm-test-support.c, depends on FLOAT for such things as calculating
ulps errors in results but can already handle different argument types
(pointers, integers, long double for nexttoward).

Makefile machinery is added to handle building tests for all pairs of
types for which there are narrowing functions (as with non-narrowing
functions, aliases are tested just the same as the functions they
alias).  gen-auto-libm-tests gains a --narrow option for building
outputs for narrowing functions (so narrowing sqrt and fma will share
the same inputs as non-narrowing, but gen-auto-libm-tests will be run
with and without that option to generate different output files).  In
the narrowing case, the auto-libm-test-out-narrow-* files include
annotations for each test about what properties ARG_FLOAT must have to
be able to represent all the inputs for that test; those annotations
result in calls to the TEST_COND_arg_fmt macro.

gen-libm-test.pl has some minor updates to handle narrowing tests (for
example, arguments in such tests must be surrounded by ARG_LIT calls
instead of LIT calls).  Various new macros are added to the C test
support code (for example, sNaN initializers need to be properly
typed, so arg_snan_value is added; other such arg_* macros are added
as it seems cleanest to do so, though some are not strictly required).
Special-casing of the ibm128 format to allow for its limitations is
adjusted to handle it as the argument format as well as as the result
format; thus, the tests of the new functions allow nonzero ulps only
in the case where ibm128 is the argument format, as otherwise the
functions correspond to fully-defined IEEE operations.  The ulps in
question appear as e.g. 'Function: "add_ldouble"' in libm-test-ulps
(with 1ulp errors then listed for double and float for that function
in powerpc); no support is added to generate corresponding faddl /
daddl ulps listings in the ulps table in the manual.

For the previous patch, I noted the need to avoid spurious macro
expansions of identifiers such as "add".  A test test-narrow-macros.c
is added to verify such macro expansions are successfully avoided, and
there is also a -mlong-double-64 version of that test for ldbl-opt.
This test is set up to cover the full set of relevant identifiers from
the start rather than adding functions one at a time as each function
group is added.

Tested for x86_64 (this patch in isolation, as well as testing for
various configurations in conjunction with the actual addition of
"add" functions).

	* math/Makefile (test-type-pairs): New variable.
	(test-type-pairs-f64xf128-yes): Likewise.
	(tests): Add test-narrow-macros.
	(libm-test-funcs-narrow): New variable.
	(libm-test-c-narrow): Likewise.
	(generated): Add $(libm-test-c-narrow).
	(libm-tests-base-narrow): New variable.
	(libm-tests-narrow): Likewise.
	(libm-tests): Add $(libm-tests-narrow).
	(libm-tests-for-type): Handle $(libm-tests-narrow).
	(libm-test-c-narrow-obj): New variable.
	($(libm-test-c-narrow-obj)): New rule.
	($(foreach t,$(libm-tests-narrow),$(objpfx)$(t).c)): Likewise.
	($(foreach f,$(libm-test-funcs-narrow),$(objpfx)$(o)-$(f).o)): Use
	$(o-iterator) to set dependencies and CFLAGS.
	* math/gen-auto-libm-tests.c: Document use for narrowing
	functions.
	(output_for_one_input_case): Take argument NARROW.
	(generate_output): Likewise.  Update call to
	output_for_one_input_case.
	(main): Take --narrow option.  Update call to generate_output.
	* math/gen-libm-test.pl (_apply_lit): Take macro name as argument.
	(apply_lit): Update call to _apply_lit.
	(apply_arglit): New function.
	(parse_args): Handle "a" arguments.
	(parse_auto_input): Handle format names using ":".
	* math/README.libm-test: Document "a" parameter type.
	* math/libm-test-support.h (ARG_TYPE_MIN): New macro.
	(ARG_TYPE_TRUE_MIN): Likewise.
	(ARG_TYPE_MAX): Likwise.
	(ARG_MIN_EXP): Likewise.
	(ARG_MAX_EXP): Likewise.
	(ARG_MANT_DIG): Likewise.
	(TEST_COND_arg_ibm128): Likewise.
	(TEST_COND_ibm128_libgcc): Define conditional on [ARG_FLOAT].
	(TEST_COND_arg_fmt): New macro.
	(init_max_error): Update prototype.
	* math/libm-test-support.c (test_ibm128): New variable.
	(init_max_error): Take argument testing_ibm128 and set test_ibm128
	instead of using [TEST_COND_ibm128] conditional.
	(test_exceptions): Use test_ibm128 instead of TEST_COND_ibm128.
	* math/libm-test-driver.c (STR_ARG_FLOAT): New macro.
	[TEST_NARROW] (TEST_MSG): New definition.
	(arg_plus_zero): New macro.
	(arg_minus_zero): Likewise.
	(arg_plus_infty): Likewise.
	(arg_minus_infty): Likewise.
	(arg_qnan_value_pl): Likewise.
	(arg_qnan_value): Likewise.
	(arg_snan_value_pl): Likewise.
	(arg_snan_value): Likewise.
	(arg_max_value): Likewise.
	(arg_min_value): Likewise.
	(arg_min_subnorm_value): Likewise.
	[ARG_FLOAT] (struct test_aa_f_data): New struct type.
	(RUN_TEST_LOOP_aa_f): New macro.
	(TEST_SUFF): New macro.
	(TEST_SUFF_STR): Likewise.
	[!TEST_MATHVEC] (VEC_SUFF): Don't define.
	(TEST_COND_any_ibm128): New macro.
	(START): Use TEST_SUFF and TEST_SUFF_STR in initializer for
	this_func.  Update call to init_max_error.
	* math/test-double.h (FUNC_NARROW_PREFIX): New macro.
	* math/test-float.h (FUNC_NARROW_PREFIX): Likewise.
	* math/test-float128.h (FUNC_NARROW_PREFIX): Likewise.
	* math/test-float32.h (FUNC_NARROW_PREFIX): Likewise.
	* math/test-float32x.h (FUNC_NARROW_PREFIX): Likewise.
	* math/test-float64.h (FUNC_NARROW_PREFIX): Likewise.
	* math/test-float64x.h (FUNC_NARROW_PREFIX): Likewise.
	* math/test-math-scalar.h (TEST_NARROW): Likewise.
	* math/test-math-vector.h (TEST_NARROW): Likewise.
	* math/test-arg-double.h: New file.
	* math/test-arg-float128.h: Likewise.
	* math/test-arg-float32x.h: Likewise.
	* math/test-arg-float64.h: Likewise.
	* math/test-arg-float64x.h: Likewise.
	* math/test-arg-ldouble.h: Likewise.
	* math/test-math-narrow.h: Likewise.
	* math/test-narrow-macros.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/test-narrow-macros-ldbl-64.c: Likewise.
	* sysdeps/ieee754/ldbl-opt/Makefile (tests): Add
	test-narrow-macros-ldbl-64.
	(CFLAGS-test-narrow-macros-ldbl-64.c): New variable.
2018-02-09 21:55:48 +00:00

847 lines
24 KiB
Perl
Executable File

#!/usr/bin/perl -w
# Copyright (C) 1999-2018 Free Software Foundation, Inc.
# This file is part of the GNU C Library.
# Contributed by Andreas Jaeger <aj@suse.de>, 1999.
# The GNU C Library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
# The GNU C Library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
# You should have received a copy of the GNU Lesser General Public
# License along with the GNU C Library; if not, see
# <http://www.gnu.org/licenses/>.
# This file needs to be tidied up
# Note that functions and tests share the same namespace.
# Information about tests are stored in: %results
# $results{$test}{"type"} is the result type, e.g. normal or complex.
# $results{$test}{"has_ulps"} is set if deltas exist.
# In the following description $type and $float are:
# - $type is either "normal", "real" (for the real part of a complex number)
# or "imag" (for the imaginary part # of a complex number).
# - $float is either of float, ifloat, double, idouble, ldouble, ildouble;
# It represents the underlying floating point type (float, double or long
# double) and if inline functions (the leading i stands for inline)
# are used.
# $results{$test}{$type}{"ulp"}{$float} is defined and has a delta as value
use Getopt::Std;
use strict;
use vars qw ($input $output $auto_input);
use vars qw (%results);
use vars qw (%beautify @all_floats %all_floats_pfx);
use vars qw ($ulps_file);
use vars qw (%auto_tests);
# all_floats is sorted and contains all recognised float types
@all_floats = ('double', 'float', 'float128', 'idouble',
'ifloat', 'ifloat128', 'ildouble', 'ldouble');
# all_floats_pfx maps C types to their C like prefix for macros.
%all_floats_pfx =
( "double" => "DBL",
"ldouble" => "LDBL",
"float" => "FLT",
"float128" => "FLT128",
);
%beautify =
( "minus_zero" => "-0",
"plus_zero" => "+0",
"-0x0p+0f" => "-0",
"-0x0p+0" => "-0",
"-0x0p+0L" => "-0",
"0x0p+0f" => "+0",
"0x0p+0" => "+0",
"0x0p+0L" => "+0",
"minus_infty" => "-inf",
"plus_infty" => "inf",
"qnan_value" => "qNaN",
"snan_value" => "sNaN",
"snan_value_ld" => "sNaN",
);
# get Options
# Options:
# a: auto-libm-test-out input file
# c: .inc input file
# u: ulps-file
# n: new ulps file
# C: libm-test.c output file
# H: libm-test-ulps.h output file
# h: help
use vars qw($opt_a $opt_c $opt_u $opt_n $opt_C $opt_H $opt_h);
getopts('a:c:u:n:C:H:h');
$ulps_file = 'libm-test-ulps';
if ($opt_h) {
print "Usage: gen-libm-test.pl [OPTIONS]\n";
print " -h print this help, then exit\n";
print " -a FILE input file with automatically generated tests\n";
print " -c FILE input file .inc file with tests\n";
print " -u FILE input file with ulps\n";
print " -n FILE generate sorted file FILE from libm-test-ulps\n";
print " -C FILE generate output C file FILE from libm-test.inc\n";
print " -H FILE generate output ulps header FILE from libm-test-ulps\n";
exit 0;
}
$ulps_file = $opt_u if ($opt_u);
$input = $opt_c if ($opt_c);
$auto_input = $opt_a if ($opt_a);
$output = $opt_C if ($opt_C);
&parse_ulps ($ulps_file) if ($opt_H || $opt_n);
&parse_auto_input ($auto_input) if ($opt_C);
&generate_testfile ($input, $output) if ($opt_C);
&output_ulps ($opt_H, $ulps_file) if ($opt_H);
&print_ulps_file ($opt_n) if ($opt_n);
# Return a nicer representation
sub beautify {
my ($arg) = @_;
my ($tmp);
if (exists $beautify{$arg}) {
return $beautify{$arg};
}
if ($arg =~ /^-/) {
$tmp = $arg;
$tmp =~ s/^-//;
if (exists $beautify{$tmp}) {
return '-' . $beautify{$tmp};
}
}
if ($arg =~ /^-?0x[0-9a-f.]*p[-+][0-9]+f$/) {
$arg =~ s/f$//;
}
if ($arg =~ /[0-9]L$/) {
$arg =~ s/L$//;
}
return $arg;
}
# Return a nicer representation of a complex number
sub build_complex_beautify {
my ($r, $i) = @_;
my ($str1, $str2);
$str1 = &beautify ($r);
$str2 = &beautify ($i);
if ($str2 =~ /^-/) {
$str2 =~ s/^-//;
$str1 .= ' - ' . $str2;
} else {
$str1 .= ' + ' . $str2;
}
$str1 .= ' i';
return $str1;
}
# Return the text to put in an initializer for a test's exception
# information.
sub show_exceptions {
my ($ignore_result, $non_finite, $test_snan, $exception) = @_;
$ignore_result = ($ignore_result ? "IGNORE_RESULT|" : "");
$non_finite = ($non_finite ? "NON_FINITE|" : "");
$test_snan = ($test_snan ? "TEST_SNAN|" : "");
if (defined $exception) {
return ", ${ignore_result}${non_finite}${test_snan}$exception";
} else {
return ", ${ignore_result}${non_finite}${test_snan}0";
}
}
# Apply the LIT(x) or ARG_LIT(x) macro to a literal floating point constant
# and strip any existing suffix.
sub _apply_lit {
my ($macro, $lit) = @_;
my $exp_re = "([+-])?[[:digit:]]+";
# Don't wrap something that does not look like a:
# * Hexadecimal FP value
# * Decimal FP value without a decimal point
# * Decimal value with a fraction
return $lit if $lit !~ /([+-])?0x[[:xdigit:]\.]+[pP]$exp_re/
and $lit !~ /[[:digit:]]+[eE]$exp_re/
and $lit !~ /[[:digit:]]*\.[[:digit:]]*([eE]$exp_re)?/;
# Strip any existing literal suffix.
$lit =~ s/[lLfF]$//;
return "$macro (${lit})";
}
# Apply LIT macro to individual tokens within an expression.
#
# This function assumes the C expression follows GNU coding
# standards. Specifically, a space separates each lexical
# token. Otherwise, this post-processing may apply LIT
# incorrectly, or around an entire expression.
sub apply_lit {
my ($lit) = @_;
my @toks = split (/ /, $lit);
foreach (@toks) {
$_ = _apply_lit ("LIT", $_);
}
return join (' ', @toks);
}
# Likewise, but apply ARG_LIT for arguments to narrowing functions.
sub apply_arglit {
my ($lit) = @_;
my @toks = split (/ /, $lit);
foreach (@toks) {
$_ = _apply_lit ("ARG_LIT", $_);
}
return join (' ', @toks);
}
# Parse the arguments to TEST_x_y
sub parse_args {
my ($file, $descr, $args) = @_;
my (@args, $descr_args, $descr_res, @descr);
my ($current_arg, $cline, $cline_res, $i);
my (@special);
my ($call_args);
my ($ignore_result_any, $ignore_result_all);
my ($num_res, @args_res, @start_rm, $rm);
my (@plus_oflow, @minus_oflow, @plus_uflow, @minus_uflow);
my (@errno_plus_oflow, @errno_minus_oflow);
my (@errno_plus_uflow, @errno_minus_uflow);
my (@xfail_rounding_ibm128_libgcc);
my ($non_finite, $test_snan);
($descr_args, $descr_res) = split /_/,$descr, 2;
@args = split /,\s*/, $args;
$call_args = "";
# Generate first the string that's shown to the user
$current_arg = 1;
@descr = split //,$descr_args;
for ($i = 0; $i <= $#descr; $i++) {
my $comma = "";
if ($current_arg > 1) {
$comma = ', ';
}
# FLOAT, ARG_FLOAT, long double, int, unsigned int, long int, long long int
if ($descr[$i] =~ /f|a|j|i|u|l|L/) {
$call_args .= $comma . &beautify ($args[$current_arg]);
++$current_arg;
next;
}
# Argument passed via pointer.
if ($descr[$i] =~ /p/) {
next;
}
# &FLOAT, &int - simplify call by not showing argument.
if ($descr[$i] =~ /F|I/) {
next;
}
# complex
if ($descr[$i] eq 'c') {
$call_args .= $comma . &build_complex_beautify ($args[$current_arg], $args[$current_arg+1]);
$current_arg += 2;
next;
}
die ("$descr[$i] is unknown");
}
# Result
@args_res = @args[$current_arg .. $#args];
$num_res = 0;
@descr = split //,$descr_res;
foreach (@descr) {
if ($_ =~ /f|i|l|L|M|U/) {
++$num_res;
} elsif ($_ eq 'c') {
$num_res += 2;
} elsif ($_ eq 'b') {
# boolean
++$num_res;
} elsif ($_ eq '1') {
++$num_res;
} else {
die ("$_ is unknown");
}
}
# consistency check
if ($#args_res == $num_res - 1) {
# One set of results for all rounding modes, no flags.
@start_rm = ( 0, 0, 0, 0 );
} elsif ($#args_res == $num_res) {
# One set of results for all rounding modes, with flags.
die ("wrong number of arguments")
unless ($args_res[$#args_res] =~ /EXCEPTION|ERRNO|IGNORE_ZERO_INF_SIGN|TEST_NAN_SIGN|NO_TEST_INLINE|XFAIL/);
@start_rm = ( 0, 0, 0, 0 );
} elsif ($#args_res == 4 * $num_res + 3) {
# One set of results per rounding mode, with flags.
@start_rm = ( 0, $num_res + 1, 2 * $num_res + 2, 3 * $num_res + 3 );
} else {
die ("wrong number of arguments");
}
# Put the C program line together
# Reset some variables to start again
$current_arg = 1;
$call_args =~ s/\"/\\\"/g;
$cline = "{ \"$call_args\"";
@descr = split //,$descr_args;
for ($i=0; $i <= $#descr; $i++) {
# FLOAT, ARG_FLOAT, long double, int, unsigned int, long int, long long int
if ($descr[$i] =~ /f|a|j|i|u|l|L/) {
if ($descr[$i] eq "f") {
$cline .= ", " . &apply_lit ($args[$current_arg]);
} elsif ($descr[$i] eq "a") {
$cline .= ", " . &apply_arglit ($args[$current_arg]);
} else {
$cline .= ", $args[$current_arg]";
}
$current_arg++;
next;
}
# &FLOAT, &int, argument passed via pointer
if ($descr[$i] =~ /F|I|p/) {
next;
}
# complex
if ($descr[$i] eq 'c') {
$cline .= ", " . &apply_lit ($args[$current_arg]);
$cline .= ", " . &apply_lit ($args[$current_arg+1]);
$current_arg += 2;
next;
}
}
@descr = split //,$descr_res;
@plus_oflow = qw(max_value plus_infty max_value plus_infty);
@minus_oflow = qw(minus_infty minus_infty -max_value -max_value);
@plus_uflow = qw(plus_zero plus_zero plus_zero min_subnorm_value);
@minus_uflow = qw(-min_subnorm_value minus_zero minus_zero minus_zero);
@errno_plus_oflow = qw(0 ERRNO_ERANGE 0 ERRNO_ERANGE);
@errno_minus_oflow = qw(ERRNO_ERANGE ERRNO_ERANGE 0 0);
@errno_plus_uflow = qw(ERRNO_ERANGE ERRNO_ERANGE ERRNO_ERANGE 0);
@errno_minus_uflow = qw(0 ERRNO_ERANGE ERRNO_ERANGE ERRNO_ERANGE);
@xfail_rounding_ibm128_libgcc = qw(XFAIL_IBM128_LIBGCC 0
XFAIL_IBM128_LIBGCC XFAIL_IBM128_LIBGCC);
for ($rm = 0; $rm <= 3; $rm++) {
$current_arg = $start_rm[$rm];
$ignore_result_any = 0;
$ignore_result_all = 1;
$cline_res = "";
@special = ();
foreach (@descr) {
if ($_ =~ /b|f|j|i|l|L|M|U/ ) {
my ($result) = $args_res[$current_arg];
if ($result eq "IGNORE") {
$ignore_result_any = 1;
$result = "0";
} else {
$ignore_result_all = 0;
}
if ($_ eq "f") {
$result = apply_lit ($result);
}
$cline_res .= ", $result";
$current_arg++;
} elsif ($_ eq 'c') {
my ($result1) = $args_res[$current_arg];
if ($result1 eq "IGNORE") {
$ignore_result_any = 1;
$result1 = "0";
} else {
$ignore_result_all = 0;
}
my ($result2) = $args_res[$current_arg + 1];
if ($result2 eq "IGNORE") {
$ignore_result_any = 1;
$result2 = "0";
} else {
$ignore_result_all = 0;
}
$result1 = apply_lit ($result1);
$result2 = apply_lit ($result2);
$cline_res .= ", $result1, $result2";
$current_arg += 2;
} elsif ($_ eq '1') {
push @special, $args_res[$current_arg];
++$current_arg;
}
}
if ($ignore_result_any && !$ignore_result_all) {
die ("some but not all function results ignored\n");
}
# Determine whether any arguments or results, for any rounding
# mode, are non-finite.
$non_finite = ($args =~ /qnan_value|snan_value|plus_infty|minus_infty/);
$test_snan = ($args =~ /snan_value/);
# Add exceptions.
$cline_res .= show_exceptions ($ignore_result_any,
$non_finite,
$test_snan,
($current_arg <= $#args_res)
? $args_res[$current_arg]
: undef);
# special treatment for some functions
$i = 0;
foreach (@special) {
++$i;
my ($extra_expected) = $_;
my ($run_extra) = ($extra_expected ne "IGNORE" ? 1 : 0);
if (!$run_extra) {
$extra_expected = "0";
} else {
$extra_expected = apply_lit ($extra_expected);
}
$cline_res .= ", $run_extra, $extra_expected";
}
$cline_res =~ s/^, //;
$cline_res =~ s/plus_oflow/$plus_oflow[$rm]/g;
$cline_res =~ s/minus_oflow/$minus_oflow[$rm]/g;
$cline_res =~ s/plus_uflow/$plus_uflow[$rm]/g;
$cline_res =~ s/minus_uflow/$minus_uflow[$rm]/g;
$cline_res =~ s/ERRNO_PLUS_OFLOW/$errno_plus_oflow[$rm]/g;
$cline_res =~ s/ERRNO_MINUS_OFLOW/$errno_minus_oflow[$rm]/g;
$cline_res =~ s/ERRNO_PLUS_UFLOW/$errno_plus_uflow[$rm]/g;
$cline_res =~ s/ERRNO_MINUS_UFLOW/$errno_minus_uflow[$rm]/g;
$cline_res =~ s/XFAIL_ROUNDING_IBM128_LIBGCC/$xfail_rounding_ibm128_libgcc[$rm]/g;
$cline .= ", { $cline_res }";
}
print $file " $cline },\n";
}
# Convert a condition from auto-libm-test-out to C form.
sub convert_condition {
my ($cond) = @_;
my (@conds, $ret);
@conds = split /:/, $cond;
foreach (@conds) {
if ($_ !~ /^arg_fmt\(/) {
s/-/_/g;
}
s/^/TEST_COND_/;
}
$ret = join " && ", @conds;
return "($ret)";
}
# Return text to OR a value into an accumulated flags string.
sub or_value {
my ($cond) = @_;
if ($cond eq "0") {
return "";
} else {
return " | $cond";
}
}
# Return a conditional expression between two values.
sub cond_value {
my ($cond, $if, $else) = @_;
if ($cond eq "1") {
return $if;
} elsif ($cond eq "0") {
return $else;
} else {
return "($cond ? $if : $else)";
}
}
# Return text to OR a conditional expression between two values into
# an accumulated flags string.
sub or_cond_value {
my ($cond, $if, $else) = @_;
return or_value (cond_value ($cond, $if, $else));
}
# Generate libm-test.c
sub generate_testfile {
my ($input, $output) = @_;
open INPUT, $input or die ("Can't open $input: $!");
open OUTPUT, ">$output" or die ("Can't open $output: $!");
# Replace the special macros
while (<INPUT>) {
# AUTO_TESTS (function),
if (/^\s*AUTO_TESTS_/) {
my ($descr, $func, @modes, $auto_test, $num_auto_tests);
my (@rm_tests, $rm, $i);
@modes = qw(downward tonearest towardzero upward);
($descr, $func) = ($_ =~ /AUTO_TESTS_(\w+)\s*\((\w+)\)/);
for ($rm = 0; $rm <= 3; $rm++) {
$rm_tests[$rm] = [sort keys %{$auto_tests{$func}{$modes[$rm]}}];
}
$num_auto_tests = scalar @{$rm_tests[0]};
for ($rm = 1; $rm <= 3; $rm++) {
if ($num_auto_tests != scalar @{$rm_tests[$rm]}) {
die ("inconsistent numbers of tests for $func\n");
}
for ($i = 0; $i < $num_auto_tests; $i++) {
if ($rm_tests[0][$i] ne $rm_tests[$rm][$i]) {
die ("inconsistent list of tests of $func\n");
}
}
}
if ($num_auto_tests == 0) {
die ("no automatic tests for $func\n");
}
foreach $auto_test (@{$rm_tests[0]}) {
my ($format, $inputs, $format_conv, $args_str);
($format, $inputs) = split / /, $auto_test, 2;
$inputs =~ s/ /, /g;
$format_conv = convert_condition ($format);
print OUTPUT "#if $format_conv\n";
$args_str = "$func, $inputs";
for ($rm = 0; $rm <= 3; $rm++) {
my ($auto_test_out, $outputs, $flags);
my ($flags_conv, @flags, %flag_cond);
$auto_test_out = $auto_tests{$func}{$modes[$rm]}{$auto_test};
($outputs, $flags) = split / : */, $auto_test_out;
$outputs =~ s/ /, /g;
@flags = split / /, $flags;
foreach (@flags) {
if (/^([^:]*):(.*)$/) {
my ($flag, $cond);
$flag = $1;
$cond = convert_condition ($2);
if (defined ($flag_cond{$flag})) {
if ($flag_cond{$flag} ne "1") {
$flag_cond{$flag} .= " || $cond";
}
} else {
$flag_cond{$flag} = $cond;
}
} else {
$flag_cond{$_} = "1";
}
}
$flags_conv = "";
if (defined ($flag_cond{"ignore-zero-inf-sign"})) {
$flags_conv .= or_cond_value ($flag_cond{"ignore-zero-inf-sign"},
"IGNORE_ZERO_INF_SIGN", "0");
}
if (defined ($flag_cond{"no-test-inline"})) {
$flags_conv .= or_cond_value ($flag_cond{"no-test-inline"},
"NO_TEST_INLINE", "0");
}
if (defined ($flag_cond{"xfail"})) {
$flags_conv .= or_cond_value ($flag_cond{"xfail"},
"XFAIL_TEST", "0");
}
my (@exc_list) = qw(divbyzero inexact invalid overflow underflow);
my ($exc);
foreach $exc (@exc_list) {
my ($exc_expected, $exc_ok, $no_exc, $exc_cond, $exc_ok_cond);
$exc_expected = "\U$exc\E_EXCEPTION";
$exc_ok = "\U$exc\E_EXCEPTION_OK";
$no_exc = "0";
if ($exc eq "inexact") {
$exc_ok = "0";
$no_exc = "NO_INEXACT_EXCEPTION";
}
if (defined ($flag_cond{$exc})) {
$exc_cond = $flag_cond{$exc};
} else {
$exc_cond = "0";
}
if (defined ($flag_cond{"$exc-ok"})) {
$exc_ok_cond = $flag_cond{"$exc-ok"};
} else {
$exc_ok_cond = "0";
}
$flags_conv .= or_cond_value ($exc_cond,
cond_value ($exc_ok_cond,
$exc_ok, $exc_expected),
cond_value ($exc_ok_cond,
$exc_ok, $no_exc));
}
my ($errno_expected, $errno_unknown_cond);
if (defined ($flag_cond{"errno-edom"})) {
if ($flag_cond{"errno-edom"} ne "1") {
die ("unexpected condition for errno-edom");
}
if (defined ($flag_cond{"errno-erange"})) {
die ("multiple errno values expected");
}
$errno_expected = "ERRNO_EDOM";
} elsif (defined ($flag_cond{"errno-erange"})) {
if ($flag_cond{"errno-erange"} ne "1") {
die ("unexpected condition for errno-erange");
}
$errno_expected = "ERRNO_ERANGE";
} else {
$errno_expected = "ERRNO_UNCHANGED";
}
if (defined ($flag_cond{"errno-edom-ok"})) {
if (defined ($flag_cond{"errno-erange-ok"})
&& ($flag_cond{"errno-erange-ok"}
ne $flag_cond{"errno-edom-ok"})) {
$errno_unknown_cond = "($flag_cond{\"errno-edom-ok\"} || $flag_cond{\"errno-erange-ok\"})";
} else {
$errno_unknown_cond = $flag_cond{"errno-edom-ok"};
}
} elsif (defined ($flag_cond{"errno-erange-ok"})) {
$errno_unknown_cond = $flag_cond{"errno-erange-ok"};
} else {
$errno_unknown_cond = "0";
}
$flags_conv .= or_cond_value ($errno_unknown_cond,
"0", $errno_expected);
if ($flags_conv eq "") {
$flags_conv = ", NO_EXCEPTION";
} else {
$flags_conv =~ s/^ \|/,/;
}
$args_str .= ", $outputs$flags_conv";
}
&parse_args (\*OUTPUT, $descr, $args_str);
print OUTPUT "#endif\n";
}
next;
}
# TEST_...
if (/^\s*TEST_/) {
my ($descr, $args);
chop;
($descr, $args) = ($_ =~ /TEST_(\w+)\s*\((.*)\)/);
&parse_args (\*OUTPUT, $descr, $args);
next;
}
print OUTPUT;
}
close INPUT;
close OUTPUT;
}
# Parse ulps file
sub parse_ulps {
my ($file) = @_;
my ($test, $type, $float, $eps, $float_regex);
# Build a basic regex to match type entries in the
# generated ULPS file.
foreach my $ftype (@all_floats) {
$float_regex .= "|" . $ftype;
}
$float_regex = "^" . substr ($float_regex, 1) . ":";
# $type has the following values:
# "normal": No complex variable
# "real": Real part of complex result
# "imag": Imaginary part of complex result
open ULP, $file or die ("Can't open $file: $!");
while (<ULP>) {
chop;
# ignore comments and empty lines
next if /^#/;
next if /^\s*$/;
if (/^Function: /) {
if (/Real part of/) {
s/Real part of //;
$type = 'real';
} elsif (/Imaginary part of/) {
s/Imaginary part of //;
$type = 'imag';
} else {
$type = 'normal';
}
($test) = ($_ =~ /^Function:\s*\"([a-zA-Z0-9_]+)\"/);
next;
}
if (/$float_regex/) {
($float, $eps) = split /\s*:\s*/,$_,2;
if ($eps eq "0") {
# ignore
next;
} else {
if (!defined ($results{$test}{$type}{'ulp'}{$float})
|| $results{$test}{$type}{'ulp'}{$float} < $eps) {
$results{$test}{$type}{'ulp'}{$float} = $eps;
$results{$test}{'has_ulps'} = 1;
}
}
if ($type =~ /^real|imag$/) {
$results{$test}{'type'} = 'complex';
} elsif ($type eq 'normal') {
$results{$test}{'type'} = 'normal';
}
next;
}
print "Skipping unknown entry: `$_'\n";
}
close ULP;
}
# Clean up a floating point number
sub clean_up_number {
my ($number) = @_;
# Remove trailing zeros after the decimal point
if ($number =~ /\./) {
$number =~ s/0+$//;
$number =~ s/\.$//;
}
return $number;
}
# Output a file which can be read in as ulps file.
sub print_ulps_file {
my ($file) = @_;
my ($test, $type, $float, $eps, $fct, $last_fct);
$last_fct = '';
open NEWULP, ">$file" or die ("Can't open $file: $!");
print NEWULP "# Begin of automatic generation\n";
print NEWULP "\n# Maximal error of functions:\n";
foreach $fct (sort keys %results) {
foreach $type ('real', 'imag', 'normal') {
if (exists $results{$fct}{$type}) {
if ($type eq 'normal') {
print NEWULP "Function: \"$fct\":\n";
} elsif ($type eq 'real') {
print NEWULP "Function: Real part of \"$fct\":\n";
} elsif ($type eq 'imag') {
print NEWULP "Function: Imaginary part of \"$fct\":\n";
}
foreach $float (@all_floats) {
if (exists $results{$fct}{$type}{'ulp'}{$float}) {
print NEWULP "$float: ",
&clean_up_number ($results{$fct}{$type}{'ulp'}{$float}),
"\n";
}
}
print NEWULP "\n";
}
}
}
print NEWULP "# end of automatic generation\n";
close NEWULP;
}
sub get_ulps {
my ($test, $type, $float) = @_;
return (exists $results{$test}{$type}{'ulp'}{$float}
? $results{$test}{$type}{'ulp'}{$float} : "0");
}
# Return the ulps value for a single test.
sub get_all_ulps_for_test {
my ($test, $type) = @_;
my ($ldouble, $double, $float, $ildouble, $idouble, $ifloat);
my ($ulps_str);
if (exists $results{$test}{'has_ulps'}) {
foreach $float (@all_floats) {
$ulps_str .= &get_ulps ($test, $type, $float) . ", ";
}
return "{" . substr ($ulps_str, 0, -2) . "}";
} else {
die "get_all_ulps_for_test called for \"$test\" with no ulps\n";
}
}
# Print include file
sub output_ulps {
my ($file, $ulps_filename) = @_;
my ($i, $fct, $type, $ulp, $ulp_real, $ulp_imag);
my (%func_ulps, %func_real_ulps, %func_imag_ulps);
open ULP, ">$file" or die ("Can't open $file: $!");
print ULP "/* This file is automatically generated\n";
print ULP " from $ulps_filename with gen-libm-test.pl.\n";
print ULP " Don't change it - change instead the master files. */\n\n";
print ULP "struct ulp_data\n";
print ULP "{\n";
print ULP " const char *name;\n";
print ULP " FLOAT max_ulp[" . @all_floats . "];\n";
print ULP "};\n\n";
for ($i = 0; $i <= $#all_floats; $i++) {
$type = $all_floats[$i];
print ULP "#define ULP_";
if ($type =~ /^i/) {
print ULP "I_";
$type = substr $type, 1;
}
print ULP "$all_floats_pfx{$type} $i\n";
}
foreach $fct (keys %results) {
$type = $results{$fct}{'type'};
if ($type eq 'normal') {
$ulp = get_all_ulps_for_test ($fct, 'normal');
} elsif ($type eq 'complex') {
$ulp_real = get_all_ulps_for_test ($fct, 'real');
$ulp_imag = get_all_ulps_for_test ($fct, 'imag');
} else {
die "unknown results ($fct) type $type\n";
}
if ($type eq 'normal') {
$func_ulps{$fct} = $ulp;
} else {
$func_real_ulps{$fct} = $ulp_real;
$func_imag_ulps{$fct} = $ulp_imag;
}
}
print ULP "\n/* Maximal error of functions. */\n";
print ULP "static const struct ulp_data func_ulps[] =\n {\n";
foreach $fct (sort keys %func_ulps) {
print ULP " { \"$fct\", $func_ulps{$fct} },\n";
}
print ULP " };\n";
print ULP "static const struct ulp_data func_real_ulps[] =\n {\n";
foreach $fct (sort keys %func_real_ulps) {
print ULP " { \"$fct\", $func_real_ulps{$fct} },\n";
}
print ULP " };\n";
print ULP "static const struct ulp_data func_imag_ulps[] =\n {\n";
foreach $fct (sort keys %func_imag_ulps) {
print ULP " { \"$fct\", $func_imag_ulps{$fct} },\n";
}
print ULP " };\n";
close ULP;
}
# Parse auto-libm-test-out.
sub parse_auto_input {
my ($file) = @_;
open AUTO, $file or die ("Can't open $file: $!");
while (<AUTO>) {
chop;
next if !/^= /;
s/^= //;
if (/^(\S+) (\S+) ([^: ][^ ]* [^:]*) : (.*)$/) {
$auto_tests{$1}{$2}{$3} = $4;
} else {
die ("bad automatic test line: $_\n");
}
}
close AUTO;
}