mirror of
https://sourceware.org/git/glibc.git
synced 2025-01-12 04:00:17 +00:00
166 lines
4.9 KiB
C
166 lines
4.9 KiB
C
/* @(#)e_log.c 5.1 93/09/24 */
|
|
/*
|
|
* ====================================================
|
|
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
*
|
|
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
* Permission to use, copy, modify, and distribute this
|
|
* software is freely granted, provided that this notice
|
|
* is preserved.
|
|
* ====================================================
|
|
*/
|
|
/* Modified by Naohiko Shimizu/Tokai University, Japan 1997/08/25,
|
|
for performance improvement on pipelined processors.
|
|
*/
|
|
|
|
#if defined(LIBM_SCCS) && !defined(lint)
|
|
static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $";
|
|
#endif
|
|
|
|
/* __ieee754_log(x)
|
|
* Return the logarithm of x
|
|
*
|
|
* Method :
|
|
* 1. Argument Reduction: find k and f such that
|
|
* x = 2^k * (1+f),
|
|
* where sqrt(2)/2 < 1+f < sqrt(2) .
|
|
*
|
|
* 2. Approximation of log(1+f).
|
|
* Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
|
|
* = 2s + 2/3 s**3 + 2/5 s**5 + .....,
|
|
* = 2s + s*R
|
|
* We use a special Reme algorithm on [0,0.1716] to generate
|
|
* a polynomial of degree 14 to approximate R The maximum error
|
|
* of this polynomial approximation is bounded by 2**-58.45. In
|
|
* other words,
|
|
* 2 4 6 8 10 12 14
|
|
* R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
|
|
* (the values of Lg1 to Lg7 are listed in the program)
|
|
* and
|
|
* | 2 14 | -58.45
|
|
* | Lg1*s +...+Lg7*s - R(z) | <= 2
|
|
* | |
|
|
* Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
|
|
* In order to guarantee error in log below 1ulp, we compute log
|
|
* by
|
|
* log(1+f) = f - s*(f - R) (if f is not too large)
|
|
* log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
|
|
*
|
|
* 3. Finally, log(x) = k*ln2 + log(1+f).
|
|
* = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
|
|
* Here ln2 is split into two floating point number:
|
|
* ln2_hi + ln2_lo,
|
|
* where n*ln2_hi is always exact for |n| < 2000.
|
|
*
|
|
* Special cases:
|
|
* log(x) is NaN with signal if x < 0 (including -INF) ;
|
|
* log(+INF) is +INF; log(0) is -INF with signal;
|
|
* log(NaN) is that NaN with no signal.
|
|
*
|
|
* Accuracy:
|
|
* according to an error analysis, the error is always less than
|
|
* 1 ulp (unit in the last place).
|
|
*
|
|
* Constants:
|
|
* The hexadecimal values are the intended ones for the following
|
|
* constants. The decimal values may be used, provided that the
|
|
* compiler will convert from decimal to binary accurately enough
|
|
* to produce the hexadecimal values shown.
|
|
*/
|
|
|
|
#include "math.h"
|
|
#include "math_private.h"
|
|
#define half Lg[8]
|
|
#define two Lg[9]
|
|
#ifdef __STDC__
|
|
static const double
|
|
#else
|
|
static double
|
|
#endif
|
|
ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
|
|
ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
|
|
two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
|
|
Lg[] = {0.0,
|
|
6.666666666666735130e-01, /* 3FE55555 55555593 */
|
|
3.999999999940941908e-01, /* 3FD99999 9997FA04 */
|
|
2.857142874366239149e-01, /* 3FD24924 94229359 */
|
|
2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
|
|
1.818357216161805012e-01, /* 3FC74664 96CB03DE */
|
|
1.531383769920937332e-01, /* 3FC39A09 D078C69F */
|
|
1.479819860511658591e-01, /* 3FC2F112 DF3E5244 */
|
|
0.5,
|
|
2.0};
|
|
#ifdef __STDC__
|
|
static const double zero = 0.0;
|
|
#else
|
|
static double zero = 0.0;
|
|
#endif
|
|
|
|
#ifdef __STDC__
|
|
double __ieee754_log(double x)
|
|
#else
|
|
double __ieee754_log(x)
|
|
double x;
|
|
#endif
|
|
{
|
|
double hfsq,f,s,z,R,w,dk,t11,t12,t21,t22,w2,zw2;
|
|
#ifdef DO_NOT_USE_THIS
|
|
double t1,t2;
|
|
#endif
|
|
int32_t k,hx,i,j;
|
|
u_int32_t lx;
|
|
|
|
EXTRACT_WORDS(hx,lx,x);
|
|
|
|
k=0;
|
|
if (hx < 0x00100000) { /* x < 2**-1022 */
|
|
if (((hx&0x7fffffff)|lx)==0)
|
|
return -two54/(x-x); /* log(+-0)=-inf */
|
|
if (hx<0) return (x-x)/(x-x); /* log(-#) = NaN */
|
|
k -= 54; x *= two54; /* subnormal number, scale up x */
|
|
GET_HIGH_WORD(hx,x);
|
|
}
|
|
if (hx >= 0x7ff00000) return x+x;
|
|
k += (hx>>20)-1023;
|
|
hx &= 0x000fffff;
|
|
i = (hx+0x95f64)&0x100000;
|
|
SET_HIGH_WORD(x,hx|(i^0x3ff00000)); /* normalize x or x/2 */
|
|
k += (i>>20);
|
|
f = x-1.0;
|
|
if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
|
|
if(f==zero) {
|
|
if(k==0) return zero; else {dk=(double)k;
|
|
return dk*ln2_hi+dk*ln2_lo;}
|
|
}
|
|
R = f*f*(half-0.33333333333333333*f);
|
|
if(k==0) return f-R; else {dk=(double)k;
|
|
return dk*ln2_hi-((R-dk*ln2_lo)-f);}
|
|
}
|
|
s = f/(two+f);
|
|
dk = (double)k;
|
|
z = s*s;
|
|
i = hx-0x6147a;
|
|
w = z*z;
|
|
j = 0x6b851-hx;
|
|
#ifdef DO_NOT_USE_THIS
|
|
t1= w*(Lg2+w*(Lg4+w*Lg6));
|
|
t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
|
|
R = t2+t1;
|
|
#else
|
|
t21 = Lg[5]+w*Lg[7]; w2=w*w;
|
|
t22 = Lg[1]+w*Lg[3]; zw2=z*w2;
|
|
t11 = Lg[4]+w*Lg[6];
|
|
t12 = w*Lg[2];
|
|
R = t12 + w2*t11 + z*t22 + zw2*t21;
|
|
#endif
|
|
i |= j;
|
|
if(i>0) {
|
|
hfsq=0.5*f*f;
|
|
if(k==0) return f-(hfsq-s*(hfsq+R)); else
|
|
return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
|
|
} else {
|
|
if(k==0) return f-s*(f-R); else
|
|
return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
|
|
}
|
|
}
|