glibc/sysdeps/ieee754/flt-32/e_lgammaf_r.c
Joseph Myers ff069f024a Fix lgammaf spurious underflows (bug 18220).
The flt-32 implementation of lgammaf produces spurious underflow
exceptions for some large arguments, because of calculations involving
x^-2 multiplied by small constants.  This patch fixes this by
adjusting the threshold for a simpler computation to 2**26 (the error
in the simpler computation is on the order of 0.5 * log (x), for a
result on the order of x * log (x)).

Tested for x86_64 and x86.

	[BZ #18220]
	* sysdeps/ieee754/flt-32/e_lgammaf_r.c (__ieee754_lgammaf_r): Use
	2**26 not 2**58 as threshold for returning x * (log (x) - 1).
	* math/auto-libm-test-in: Add another test of lgamma.
	* math/auto-libm-test-out: Regenerated.
2015-05-15 17:21:08 +00:00

236 lines
7.1 KiB
C

/* e_lgammaf_r.c -- float version of e_lgamma_r.c.
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#include <math.h>
#include <math_private.h>
static const float
two23= 8.3886080000e+06, /* 0x4b000000 */
half= 5.0000000000e-01, /* 0x3f000000 */
one = 1.0000000000e+00, /* 0x3f800000 */
pi = 3.1415927410e+00, /* 0x40490fdb */
a0 = 7.7215664089e-02, /* 0x3d9e233f */
a1 = 3.2246702909e-01, /* 0x3ea51a66 */
a2 = 6.7352302372e-02, /* 0x3d89f001 */
a3 = 2.0580807701e-02, /* 0x3ca89915 */
a4 = 7.3855509982e-03, /* 0x3bf2027e */
a5 = 2.8905137442e-03, /* 0x3b3d6ec6 */
a6 = 1.1927076848e-03, /* 0x3a9c54a1 */
a7 = 5.1006977446e-04, /* 0x3a05b634 */
a8 = 2.2086278477e-04, /* 0x39679767 */
a9 = 1.0801156895e-04, /* 0x38e28445 */
a10 = 2.5214456400e-05, /* 0x37d383a2 */
a11 = 4.4864096708e-05, /* 0x383c2c75 */
tc = 1.4616321325e+00, /* 0x3fbb16c3 */
tf = -1.2148628384e-01, /* 0xbdf8cdcd */
/* tt = -(tail of tf) */
tt = 6.6971006518e-09, /* 0x31e61c52 */
t0 = 4.8383611441e-01, /* 0x3ef7b95e */
t1 = -1.4758771658e-01, /* 0xbe17213c */
t2 = 6.4624942839e-02, /* 0x3d845a15 */
t3 = -3.2788541168e-02, /* 0xbd064d47 */
t4 = 1.7970675603e-02, /* 0x3c93373d */
t5 = -1.0314224288e-02, /* 0xbc28fcfe */
t6 = 6.1005386524e-03, /* 0x3bc7e707 */
t7 = -3.6845202558e-03, /* 0xbb7177fe */
t8 = 2.2596477065e-03, /* 0x3b141699 */
t9 = -1.4034647029e-03, /* 0xbab7f476 */
t10 = 8.8108185446e-04, /* 0x3a66f867 */
t11 = -5.3859531181e-04, /* 0xba0d3085 */
t12 = 3.1563205994e-04, /* 0x39a57b6b */
t13 = -3.1275415677e-04, /* 0xb9a3f927 */
t14 = 3.3552918467e-04, /* 0x39afe9f7 */
u0 = -7.7215664089e-02, /* 0xbd9e233f */
u1 = 6.3282704353e-01, /* 0x3f2200f4 */
u2 = 1.4549225569e+00, /* 0x3fba3ae7 */
u3 = 9.7771751881e-01, /* 0x3f7a4bb2 */
u4 = 2.2896373272e-01, /* 0x3e6a7578 */
u5 = 1.3381091878e-02, /* 0x3c5b3c5e */
v1 = 2.4559779167e+00, /* 0x401d2ebe */
v2 = 2.1284897327e+00, /* 0x4008392d */
v3 = 7.6928514242e-01, /* 0x3f44efdf */
v4 = 1.0422264785e-01, /* 0x3dd572af */
v5 = 3.2170924824e-03, /* 0x3b52d5db */
s0 = -7.7215664089e-02, /* 0xbd9e233f */
s1 = 2.1498242021e-01, /* 0x3e5c245a */
s2 = 3.2577878237e-01, /* 0x3ea6cc7a */
s3 = 1.4635047317e-01, /* 0x3e15dce6 */
s4 = 2.6642270386e-02, /* 0x3cda40e4 */
s5 = 1.8402845599e-03, /* 0x3af135b4 */
s6 = 3.1947532989e-05, /* 0x3805ff67 */
r1 = 1.3920053244e+00, /* 0x3fb22d3b */
r2 = 7.2193557024e-01, /* 0x3f38d0c5 */
r3 = 1.7193385959e-01, /* 0x3e300f6e */
r4 = 1.8645919859e-02, /* 0x3c98bf54 */
r5 = 7.7794247773e-04, /* 0x3a4beed6 */
r6 = 7.3266842264e-06, /* 0x36f5d7bd */
w0 = 4.1893854737e-01, /* 0x3ed67f1d */
w1 = 8.3333335817e-02, /* 0x3daaaaab */
w2 = -2.7777778450e-03, /* 0xbb360b61 */
w3 = 7.9365057172e-04, /* 0x3a500cfd */
w4 = -5.9518753551e-04, /* 0xba1c065c */
w5 = 8.3633989561e-04, /* 0x3a5b3dd2 */
w6 = -1.6309292987e-03; /* 0xbad5c4e8 */
static const float zero= 0.0000000000e+00;
static float
sin_pif(float x)
{
float y,z;
int n,ix;
GET_FLOAT_WORD(ix,x);
ix &= 0x7fffffff;
if(ix<0x3e800000) return __kernel_sinf(pi*x,zero,0);
y = -x; /* x is assume negative */
/*
* argument reduction, make sure inexact flag not raised if input
* is an integer
*/
z = __floorf(y);
if(z!=y) { /* inexact anyway */
y *= (float)0.5;
y = (float)2.0*(y - __floorf(y)); /* y = |x| mod 2.0 */
n = (int) (y*(float)4.0);
} else {
if(ix>=0x4b800000) {
y = zero; n = 0; /* y must be even */
} else {
if(ix<0x4b000000) z = y+two23; /* exact */
GET_FLOAT_WORD(n,z);
n &= 1;
y = n;
n<<= 2;
}
}
switch (n) {
case 0: y = __kernel_sinf(pi*y,zero,0); break;
case 1:
case 2: y = __kernel_cosf(pi*((float)0.5-y),zero); break;
case 3:
case 4: y = __kernel_sinf(pi*(one-y),zero,0); break;
case 5:
case 6: y = -__kernel_cosf(pi*(y-(float)1.5),zero); break;
default: y = __kernel_sinf(pi*(y-(float)2.0),zero,0); break;
}
return -y;
}
float
__ieee754_lgammaf_r(float x, int *signgamp)
{
float t,y,z,nadj,p,p1,p2,p3,q,r,w;
int i,hx,ix;
GET_FLOAT_WORD(hx,x);
/* purge off +-inf, NaN, +-0, and negative arguments */
*signgamp = 1;
ix = hx&0x7fffffff;
if(__builtin_expect(ix>=0x7f800000, 0)) return x*x;
if(__builtin_expect(ix==0, 0))
{
if (hx < 0)
*signgamp = -1;
return one/fabsf(x);
}
if(__builtin_expect(ix<0x30800000, 0)) {
/* |x|<2**-30, return -log(|x|) */
if(hx<0) {
*signgamp = -1;
return -__ieee754_logf(-x);
} else return -__ieee754_logf(x);
}
if(hx<0) {
if(ix>=0x4b000000) /* |x|>=2**23, must be -integer */
return x/zero;
t = sin_pif(x);
if(t==zero) return one/fabsf(t); /* -integer */
nadj = __ieee754_logf(pi/fabsf(t*x));
if(t<zero) *signgamp = -1;
x = -x;
}
/* purge off 1 and 2 */
if (ix==0x3f800000||ix==0x40000000) r = 0;
/* for x < 2.0 */
else if(ix<0x40000000) {
if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
r = -__ieee754_logf(x);
if(ix>=0x3f3b4a20) {y = one-x; i= 0;}
else if(ix>=0x3e6d3308) {y= x-(tc-one); i=1;}
else {y = x; i=2;}
} else {
r = zero;
if(ix>=0x3fdda618) {y=(float)2.0-x;i=0;} /* [1.7316,2] */
else if(ix>=0x3F9da620) {y=x-tc;i=1;} /* [1.23,1.73] */
else {y=x-one;i=2;}
}
switch(i) {
case 0:
z = y*y;
p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
p = y*p1+p2;
r += (p-(float)0.5*y); break;
case 1:
z = y*y;
w = z*y;
p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12))); /* parallel comp */
p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
p = z*p1-(tt-w*(p2+y*p3));
r += (tf + p); break;
case 2:
p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
p2 = one+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
r += (-(float)0.5*y + p1/p2);
}
}
else if(ix<0x41000000) { /* x < 8.0 */
i = (int)x;
t = zero;
y = x-(float)i;
p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
q = one+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
r = half*y+p/q;
z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
switch(i) {
case 7: z *= (y+(float)6.0); /* FALLTHRU */
case 6: z *= (y+(float)5.0); /* FALLTHRU */
case 5: z *= (y+(float)4.0); /* FALLTHRU */
case 4: z *= (y+(float)3.0); /* FALLTHRU */
case 3: z *= (y+(float)2.0); /* FALLTHRU */
r += __ieee754_logf(z); break;
}
/* 8.0 <= x < 2**26 */
} else if (ix < 0x4c800000) {
t = __ieee754_logf(x);
z = one/x;
y = z*z;
w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
r = (x-half)*(t-one)+w;
} else
/* 2**26 <= x <= inf */
r = x*(__ieee754_logf(x)-one);
if(hx<0) r = nadj - r;
return r;
}
strong_alias (__ieee754_lgammaf_r, __lgammaf_r_finite)