mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-14 17:11:06 +00:00
869 lines
25 KiB
ArmAsm
869 lines
25 KiB
ArmAsm
/* Copyright (C) 2012-2017 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#ifdef ANDROID_CHANGES
|
|
# include "machine/asm.h"
|
|
# include "machine/regdef.h"
|
|
# define USE_MEMMOVE_FOR_OVERLAP
|
|
# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED
|
|
# define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE
|
|
#elif _LIBC
|
|
# include <sysdep.h>
|
|
# include <regdef.h>
|
|
# include <sys/asm.h>
|
|
# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED
|
|
# define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE
|
|
#elif defined _COMPILING_NEWLIB
|
|
# include "machine/asm.h"
|
|
# include "machine/regdef.h"
|
|
# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD_STREAMED
|
|
# define PREFETCH_STORE_HINT PREFETCH_HINT_PREPAREFORSTORE
|
|
#else
|
|
# include <regdef.h>
|
|
# include <sys/asm.h>
|
|
#endif
|
|
|
|
#if (_MIPS_ISA == _MIPS_ISA_MIPS4) || (_MIPS_ISA == _MIPS_ISA_MIPS5) || \
|
|
(_MIPS_ISA == _MIPS_ISA_MIPS32) || (_MIPS_ISA == _MIPS_ISA_MIPS64)
|
|
# ifndef DISABLE_PREFETCH
|
|
# define USE_PREFETCH
|
|
# endif
|
|
#endif
|
|
|
|
#if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABI64) || (_MIPS_SIM == _ABIN32))
|
|
# ifndef DISABLE_DOUBLE
|
|
# define USE_DOUBLE
|
|
# endif
|
|
#endif
|
|
|
|
/* Some asm.h files do not have the L macro definition. */
|
|
#ifndef L
|
|
# if _MIPS_SIM == _ABIO32
|
|
# define L(label) $L ## label
|
|
# else
|
|
# define L(label) .L ## label
|
|
# endif
|
|
#endif
|
|
|
|
/* Some asm.h files do not have the PTR_ADDIU macro definition. */
|
|
#ifndef PTR_ADDIU
|
|
# ifdef USE_DOUBLE
|
|
# define PTR_ADDIU daddiu
|
|
# else
|
|
# define PTR_ADDIU addiu
|
|
# endif
|
|
#endif
|
|
|
|
/* Some asm.h files do not have the PTR_SRA macro definition. */
|
|
#ifndef PTR_SRA
|
|
# ifdef USE_DOUBLE
|
|
# define PTR_SRA dsra
|
|
# else
|
|
# define PTR_SRA sra
|
|
# endif
|
|
#endif
|
|
|
|
/* New R6 instructions that may not be in asm.h. */
|
|
#ifndef PTR_LSA
|
|
# if _MIPS_SIM == _ABI64
|
|
# define PTR_LSA dlsa
|
|
# else
|
|
# define PTR_LSA lsa
|
|
# endif
|
|
#endif
|
|
|
|
/*
|
|
* Using PREFETCH_HINT_LOAD_STREAMED instead of PREFETCH_LOAD on load
|
|
* prefetches appears to offer a slight preformance advantage.
|
|
*
|
|
* Using PREFETCH_HINT_PREPAREFORSTORE instead of PREFETCH_STORE
|
|
* or PREFETCH_STORE_STREAMED offers a large performance advantage
|
|
* but PREPAREFORSTORE has some special restrictions to consider.
|
|
*
|
|
* Prefetch with the 'prepare for store' hint does not copy a memory
|
|
* location into the cache, it just allocates a cache line and zeros
|
|
* it out. This means that if you do not write to the entire cache
|
|
* line before writing it out to memory some data will get zero'ed out
|
|
* when the cache line is written back to memory and data will be lost.
|
|
*
|
|
* Also if you are using this memcpy to copy overlapping buffers it may
|
|
* not behave correctly when using the 'prepare for store' hint. If you
|
|
* use the 'prepare for store' prefetch on a memory area that is in the
|
|
* memcpy source (as well as the memcpy destination), then you will get
|
|
* some data zero'ed out before you have a chance to read it and data will
|
|
* be lost.
|
|
*
|
|
* If you are going to use this memcpy routine with the 'prepare for store'
|
|
* prefetch you may want to set USE_MEMMOVE_FOR_OVERLAP in order to avoid
|
|
* the problem of running memcpy on overlapping buffers.
|
|
*
|
|
* There are ifdef'ed sections of this memcpy to make sure that it does not
|
|
* do prefetches on cache lines that are not going to be completely written.
|
|
* This code is only needed and only used when PREFETCH_STORE_HINT is set to
|
|
* PREFETCH_HINT_PREPAREFORSTORE. This code assumes that cache lines are
|
|
* 32 bytes and if the cache line is larger it will not work correctly.
|
|
*/
|
|
|
|
#ifdef USE_PREFETCH
|
|
# define PREFETCH_HINT_LOAD 0
|
|
# define PREFETCH_HINT_STORE 1
|
|
# define PREFETCH_HINT_LOAD_STREAMED 4
|
|
# define PREFETCH_HINT_STORE_STREAMED 5
|
|
# define PREFETCH_HINT_LOAD_RETAINED 6
|
|
# define PREFETCH_HINT_STORE_RETAINED 7
|
|
# define PREFETCH_HINT_WRITEBACK_INVAL 25
|
|
# define PREFETCH_HINT_PREPAREFORSTORE 30
|
|
|
|
/*
|
|
* If we have not picked out what hints to use at this point use the
|
|
* standard load and store prefetch hints.
|
|
*/
|
|
# ifndef PREFETCH_STORE_HINT
|
|
# define PREFETCH_STORE_HINT PREFETCH_HINT_STORE
|
|
# endif
|
|
# ifndef PREFETCH_LOAD_HINT
|
|
# define PREFETCH_LOAD_HINT PREFETCH_HINT_LOAD
|
|
# endif
|
|
|
|
/*
|
|
* We double everything when USE_DOUBLE is true so we do 2 prefetches to
|
|
* get 64 bytes in that case. The assumption is that each individual
|
|
* prefetch brings in 32 bytes.
|
|
*/
|
|
|
|
# ifdef USE_DOUBLE
|
|
# define PREFETCH_CHUNK 64
|
|
# define PREFETCH_FOR_LOAD(chunk, reg) \
|
|
pref PREFETCH_LOAD_HINT, (chunk)*64(reg); \
|
|
pref PREFETCH_LOAD_HINT, ((chunk)*64)+32(reg)
|
|
# define PREFETCH_FOR_STORE(chunk, reg) \
|
|
pref PREFETCH_STORE_HINT, (chunk)*64(reg); \
|
|
pref PREFETCH_STORE_HINT, ((chunk)*64)+32(reg)
|
|
# else
|
|
# define PREFETCH_CHUNK 32
|
|
# define PREFETCH_FOR_LOAD(chunk, reg) \
|
|
pref PREFETCH_LOAD_HINT, (chunk)*32(reg)
|
|
# define PREFETCH_FOR_STORE(chunk, reg) \
|
|
pref PREFETCH_STORE_HINT, (chunk)*32(reg)
|
|
# endif
|
|
/* MAX_PREFETCH_SIZE is the maximum size of a prefetch, it must not be less
|
|
* than PREFETCH_CHUNK, the assumed size of each prefetch. If the real size
|
|
* of a prefetch is greater than MAX_PREFETCH_SIZE and the PREPAREFORSTORE
|
|
* hint is used, the code will not work correctly. If PREPAREFORSTORE is not
|
|
* used then MAX_PREFETCH_SIZE does not matter. */
|
|
# define MAX_PREFETCH_SIZE 128
|
|
/* PREFETCH_LIMIT is set based on the fact that we never use an offset greater
|
|
* than 5 on a STORE prefetch and that a single prefetch can never be larger
|
|
* than MAX_PREFETCH_SIZE. We add the extra 32 when USE_DOUBLE is set because
|
|
* we actually do two prefetches in that case, one 32 bytes after the other. */
|
|
# ifdef USE_DOUBLE
|
|
# define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + 32 + MAX_PREFETCH_SIZE
|
|
# else
|
|
# define PREFETCH_LIMIT (5 * PREFETCH_CHUNK) + MAX_PREFETCH_SIZE
|
|
# endif
|
|
# if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE) \
|
|
&& ((PREFETCH_CHUNK * 4) < MAX_PREFETCH_SIZE)
|
|
/* We cannot handle this because the initial prefetches may fetch bytes that
|
|
* are before the buffer being copied. We start copies with an offset
|
|
* of 4 so avoid this situation when using PREPAREFORSTORE. */
|
|
#error "PREFETCH_CHUNK is too large and/or MAX_PREFETCH_SIZE is too small."
|
|
# endif
|
|
#else /* USE_PREFETCH not defined */
|
|
# define PREFETCH_FOR_LOAD(offset, reg)
|
|
# define PREFETCH_FOR_STORE(offset, reg)
|
|
#endif
|
|
|
|
#if __mips_isa_rev > 5
|
|
# if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
|
|
# undef PREFETCH_STORE_HINT
|
|
# define PREFETCH_STORE_HINT PREFETCH_HINT_STORE_STREAMED
|
|
# endif
|
|
# define R6_CODE
|
|
#endif
|
|
|
|
/* Allow the routine to be named something else if desired. */
|
|
#ifndef MEMCPY_NAME
|
|
# define MEMCPY_NAME memcpy
|
|
#endif
|
|
|
|
/* We use these 32/64 bit registers as temporaries to do the copying. */
|
|
#define REG0 t0
|
|
#define REG1 t1
|
|
#define REG2 t2
|
|
#define REG3 t3
|
|
#if defined(_MIPS_SIM) && ((_MIPS_SIM == _ABIO32) || (_MIPS_SIM == _ABIO64))
|
|
# define REG4 t4
|
|
# define REG5 t5
|
|
# define REG6 t6
|
|
# define REG7 t7
|
|
#else
|
|
# define REG4 ta0
|
|
# define REG5 ta1
|
|
# define REG6 ta2
|
|
# define REG7 ta3
|
|
#endif
|
|
|
|
/* We load/store 64 bits at a time when USE_DOUBLE is true.
|
|
* The C_ prefix stands for CHUNK and is used to avoid macro name
|
|
* conflicts with system header files. */
|
|
|
|
#ifdef USE_DOUBLE
|
|
# define C_ST sd
|
|
# define C_LD ld
|
|
# ifdef __MIPSEB
|
|
# define C_LDHI ldl /* high part is left in big-endian */
|
|
# define C_STHI sdl /* high part is left in big-endian */
|
|
# define C_LDLO ldr /* low part is right in big-endian */
|
|
# define C_STLO sdr /* low part is right in big-endian */
|
|
# else
|
|
# define C_LDHI ldr /* high part is right in little-endian */
|
|
# define C_STHI sdr /* high part is right in little-endian */
|
|
# define C_LDLO ldl /* low part is left in little-endian */
|
|
# define C_STLO sdl /* low part is left in little-endian */
|
|
# endif
|
|
# define C_ALIGN dalign /* r6 align instruction */
|
|
#else
|
|
# define C_ST sw
|
|
# define C_LD lw
|
|
# ifdef __MIPSEB
|
|
# define C_LDHI lwl /* high part is left in big-endian */
|
|
# define C_STHI swl /* high part is left in big-endian */
|
|
# define C_LDLO lwr /* low part is right in big-endian */
|
|
# define C_STLO swr /* low part is right in big-endian */
|
|
# else
|
|
# define C_LDHI lwr /* high part is right in little-endian */
|
|
# define C_STHI swr /* high part is right in little-endian */
|
|
# define C_LDLO lwl /* low part is left in little-endian */
|
|
# define C_STLO swl /* low part is left in little-endian */
|
|
# endif
|
|
# define C_ALIGN align /* r6 align instruction */
|
|
#endif
|
|
|
|
/* Bookkeeping values for 32 vs. 64 bit mode. */
|
|
#ifdef USE_DOUBLE
|
|
# define NSIZE 8
|
|
# define NSIZEMASK 0x3f
|
|
# define NSIZEDMASK 0x7f
|
|
#else
|
|
# define NSIZE 4
|
|
# define NSIZEMASK 0x1f
|
|
# define NSIZEDMASK 0x3f
|
|
#endif
|
|
#define UNIT(unit) ((unit)*NSIZE)
|
|
#define UNITM1(unit) (((unit)*NSIZE)-1)
|
|
|
|
#ifdef ANDROID_CHANGES
|
|
LEAF(MEMCPY_NAME, 0)
|
|
#else
|
|
LEAF(MEMCPY_NAME)
|
|
#endif
|
|
.set nomips16
|
|
.set noreorder
|
|
/*
|
|
* Below we handle the case where memcpy is called with overlapping src and dst.
|
|
* Although memcpy is not required to handle this case, some parts of Android
|
|
* like Skia rely on such usage. We call memmove to handle such cases.
|
|
*/
|
|
#ifdef USE_MEMMOVE_FOR_OVERLAP
|
|
PTR_SUBU t0,a0,a1
|
|
PTR_SRA t2,t0,31
|
|
xor t1,t0,t2
|
|
PTR_SUBU t0,t1,t2
|
|
sltu t2,t0,a2
|
|
beq t2,zero,L(memcpy)
|
|
la t9,memmove
|
|
jr t9
|
|
nop
|
|
L(memcpy):
|
|
#endif
|
|
/*
|
|
* If the size is less than 2*NSIZE (8 or 16), go to L(lastb). Regardless of
|
|
* size, copy dst pointer to v0 for the return value.
|
|
*/
|
|
slti t2,a2,(2 * NSIZE)
|
|
bne t2,zero,L(lasts)
|
|
#if defined(RETURN_FIRST_PREFETCH) || defined(RETURN_LAST_PREFETCH)
|
|
move v0,zero
|
|
#else
|
|
move v0,a0
|
|
#endif
|
|
|
|
#ifndef R6_CODE
|
|
|
|
/*
|
|
* If src and dst have different alignments, go to L(unaligned), if they
|
|
* have the same alignment (but are not actually aligned) do a partial
|
|
* load/store to make them aligned. If they are both already aligned
|
|
* we can start copying at L(aligned).
|
|
*/
|
|
xor t8,a1,a0
|
|
andi t8,t8,(NSIZE-1) /* t8 is a0/a1 word-displacement */
|
|
bne t8,zero,L(unaligned)
|
|
PTR_SUBU a3, zero, a0
|
|
|
|
andi a3,a3,(NSIZE-1) /* copy a3 bytes to align a0/a1 */
|
|
beq a3,zero,L(aligned) /* if a3=0, it is already aligned */
|
|
PTR_SUBU a2,a2,a3 /* a2 is the remining bytes count */
|
|
|
|
C_LDHI t8,0(a1)
|
|
PTR_ADDU a1,a1,a3
|
|
C_STHI t8,0(a0)
|
|
PTR_ADDU a0,a0,a3
|
|
|
|
#else /* R6_CODE */
|
|
|
|
/*
|
|
* Align the destination and hope that the source gets aligned too. If it
|
|
* doesn't we jump to L(r6_unaligned*) to do unaligned copies using the r6
|
|
* align instruction.
|
|
*/
|
|
andi t8,a0,7
|
|
lapc t9,L(atable)
|
|
PTR_LSA t9,t8,t9,2
|
|
jrc t9
|
|
L(atable):
|
|
bc L(lb0)
|
|
bc L(lb7)
|
|
bc L(lb6)
|
|
bc L(lb5)
|
|
bc L(lb4)
|
|
bc L(lb3)
|
|
bc L(lb2)
|
|
bc L(lb1)
|
|
L(lb7):
|
|
lb a3, 6(a1)
|
|
sb a3, 6(a0)
|
|
L(lb6):
|
|
lb a3, 5(a1)
|
|
sb a3, 5(a0)
|
|
L(lb5):
|
|
lb a3, 4(a1)
|
|
sb a3, 4(a0)
|
|
L(lb4):
|
|
lb a3, 3(a1)
|
|
sb a3, 3(a0)
|
|
L(lb3):
|
|
lb a3, 2(a1)
|
|
sb a3, 2(a0)
|
|
L(lb2):
|
|
lb a3, 1(a1)
|
|
sb a3, 1(a0)
|
|
L(lb1):
|
|
lb a3, 0(a1)
|
|
sb a3, 0(a0)
|
|
|
|
li t9,8
|
|
subu t8,t9,t8
|
|
PTR_SUBU a2,a2,t8
|
|
PTR_ADDU a0,a0,t8
|
|
PTR_ADDU a1,a1,t8
|
|
L(lb0):
|
|
|
|
andi t8,a1,(NSIZE-1)
|
|
lapc t9,L(jtable)
|
|
PTR_LSA t9,t8,t9,2
|
|
jrc t9
|
|
L(jtable):
|
|
bc L(aligned)
|
|
bc L(r6_unaligned1)
|
|
bc L(r6_unaligned2)
|
|
bc L(r6_unaligned3)
|
|
# ifdef USE_DOUBLE
|
|
bc L(r6_unaligned4)
|
|
bc L(r6_unaligned5)
|
|
bc L(r6_unaligned6)
|
|
bc L(r6_unaligned7)
|
|
# endif
|
|
#endif /* R6_CODE */
|
|
|
|
L(aligned):
|
|
|
|
/*
|
|
* Now dst/src are both aligned to (word or double word) aligned addresses
|
|
* Set a2 to count how many bytes we have to copy after all the 64/128 byte
|
|
* chunks are copied and a3 to the dst pointer after all the 64/128 byte
|
|
* chunks have been copied. We will loop, incrementing a0 and a1 until a0
|
|
* equals a3.
|
|
*/
|
|
|
|
andi t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */
|
|
beq a2,t8,L(chkw) /* if a2==t8, no 64-byte/128-byte chunks */
|
|
PTR_SUBU a3,a2,t8 /* subtract from a2 the reminder */
|
|
PTR_ADDU a3,a0,a3 /* Now a3 is the final dst after loop */
|
|
|
|
/* When in the loop we may prefetch with the 'prepare to store' hint,
|
|
* in this case the a0+x should not be past the "t0-32" address. This
|
|
* means: for x=128 the last "safe" a0 address is "t0-160". Alternatively,
|
|
* for x=64 the last "safe" a0 address is "t0-96" In the current version we
|
|
* will use "prefetch hint,128(a0)", so "t0-160" is the limit.
|
|
*/
|
|
#if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
|
|
PTR_ADDU t0,a0,a2 /* t0 is the "past the end" address */
|
|
PTR_SUBU t9,t0,PREFETCH_LIMIT /* t9 is the "last safe pref" address */
|
|
#endif
|
|
PREFETCH_FOR_LOAD (0, a1)
|
|
PREFETCH_FOR_LOAD (1, a1)
|
|
PREFETCH_FOR_LOAD (2, a1)
|
|
PREFETCH_FOR_LOAD (3, a1)
|
|
#if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE)
|
|
PREFETCH_FOR_STORE (1, a0)
|
|
PREFETCH_FOR_STORE (2, a0)
|
|
PREFETCH_FOR_STORE (3, a0)
|
|
#endif
|
|
#if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH)
|
|
# if PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE
|
|
sltu v1,t9,a0
|
|
bgtz v1,L(skip_set)
|
|
nop
|
|
PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4)
|
|
L(skip_set):
|
|
# else
|
|
PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1)
|
|
# endif
|
|
#endif
|
|
#if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH) \
|
|
&& (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE)
|
|
PTR_ADDIU v0,a0,(PREFETCH_CHUNK*3)
|
|
# ifdef USE_DOUBLE
|
|
PTR_ADDIU v0,v0,32
|
|
# endif
|
|
#endif
|
|
L(loop16w):
|
|
C_LD t0,UNIT(0)(a1)
|
|
#if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
|
|
sltu v1,t9,a0 /* If a0 > t9 don't use next prefetch */
|
|
bgtz v1,L(skip_pref)
|
|
#endif
|
|
C_LD t1,UNIT(1)(a1)
|
|
#ifdef R6_CODE
|
|
PREFETCH_FOR_STORE (2, a0)
|
|
#else
|
|
PREFETCH_FOR_STORE (4, a0)
|
|
PREFETCH_FOR_STORE (5, a0)
|
|
#endif
|
|
#if defined(RETURN_LAST_PREFETCH) && defined(USE_PREFETCH)
|
|
PTR_ADDIU v0,a0,(PREFETCH_CHUNK*5)
|
|
# ifdef USE_DOUBLE
|
|
PTR_ADDIU v0,v0,32
|
|
# endif
|
|
#endif
|
|
L(skip_pref):
|
|
C_LD REG2,UNIT(2)(a1)
|
|
C_LD REG3,UNIT(3)(a1)
|
|
C_LD REG4,UNIT(4)(a1)
|
|
C_LD REG5,UNIT(5)(a1)
|
|
C_LD REG6,UNIT(6)(a1)
|
|
C_LD REG7,UNIT(7)(a1)
|
|
#ifdef R6_CODE
|
|
PREFETCH_FOR_LOAD (3, a1)
|
|
#else
|
|
PREFETCH_FOR_LOAD (4, a1)
|
|
#endif
|
|
C_ST t0,UNIT(0)(a0)
|
|
C_ST t1,UNIT(1)(a0)
|
|
C_ST REG2,UNIT(2)(a0)
|
|
C_ST REG3,UNIT(3)(a0)
|
|
C_ST REG4,UNIT(4)(a0)
|
|
C_ST REG5,UNIT(5)(a0)
|
|
C_ST REG6,UNIT(6)(a0)
|
|
C_ST REG7,UNIT(7)(a0)
|
|
|
|
C_LD t0,UNIT(8)(a1)
|
|
C_LD t1,UNIT(9)(a1)
|
|
C_LD REG2,UNIT(10)(a1)
|
|
C_LD REG3,UNIT(11)(a1)
|
|
C_LD REG4,UNIT(12)(a1)
|
|
C_LD REG5,UNIT(13)(a1)
|
|
C_LD REG6,UNIT(14)(a1)
|
|
C_LD REG7,UNIT(15)(a1)
|
|
#ifndef R6_CODE
|
|
PREFETCH_FOR_LOAD (5, a1)
|
|
#endif
|
|
C_ST t0,UNIT(8)(a0)
|
|
C_ST t1,UNIT(9)(a0)
|
|
C_ST REG2,UNIT(10)(a0)
|
|
C_ST REG3,UNIT(11)(a0)
|
|
C_ST REG4,UNIT(12)(a0)
|
|
C_ST REG5,UNIT(13)(a0)
|
|
C_ST REG6,UNIT(14)(a0)
|
|
C_ST REG7,UNIT(15)(a0)
|
|
PTR_ADDIU a0,a0,UNIT(16) /* adding 64/128 to dest */
|
|
bne a0,a3,L(loop16w)
|
|
PTR_ADDIU a1,a1,UNIT(16) /* adding 64/128 to src */
|
|
move a2,t8
|
|
|
|
/* Here we have src and dest word-aligned but less than 64-bytes or
|
|
* 128 bytes to go. Check for a 32(64) byte chunk and copy if if there
|
|
* is one. Otherwise jump down to L(chk1w) to handle the tail end of
|
|
* the copy.
|
|
*/
|
|
|
|
L(chkw):
|
|
PREFETCH_FOR_LOAD (0, a1)
|
|
andi t8,a2,NSIZEMASK /* Is there a 32-byte/64-byte chunk. */
|
|
/* The t8 is the reminder count past 32-bytes */
|
|
beq a2,t8,L(chk1w) /* When a2=t8, no 32-byte chunk */
|
|
nop
|
|
C_LD t0,UNIT(0)(a1)
|
|
C_LD t1,UNIT(1)(a1)
|
|
C_LD REG2,UNIT(2)(a1)
|
|
C_LD REG3,UNIT(3)(a1)
|
|
C_LD REG4,UNIT(4)(a1)
|
|
C_LD REG5,UNIT(5)(a1)
|
|
C_LD REG6,UNIT(6)(a1)
|
|
C_LD REG7,UNIT(7)(a1)
|
|
PTR_ADDIU a1,a1,UNIT(8)
|
|
C_ST t0,UNIT(0)(a0)
|
|
C_ST t1,UNIT(1)(a0)
|
|
C_ST REG2,UNIT(2)(a0)
|
|
C_ST REG3,UNIT(3)(a0)
|
|
C_ST REG4,UNIT(4)(a0)
|
|
C_ST REG5,UNIT(5)(a0)
|
|
C_ST REG6,UNIT(6)(a0)
|
|
C_ST REG7,UNIT(7)(a0)
|
|
PTR_ADDIU a0,a0,UNIT(8)
|
|
|
|
/*
|
|
* Here we have less than 32(64) bytes to copy. Set up for a loop to
|
|
* copy one word (or double word) at a time. Set a2 to count how many
|
|
* bytes we have to copy after all the word (or double word) chunks are
|
|
* copied and a3 to the dst pointer after all the (d)word chunks have
|
|
* been copied. We will loop, incrementing a0 and a1 until a0 equals a3.
|
|
*/
|
|
L(chk1w):
|
|
andi a2,t8,(NSIZE-1) /* a2 is the reminder past one (d)word chunks */
|
|
beq a2,t8,L(lastw)
|
|
PTR_SUBU a3,t8,a2 /* a3 is count of bytes in one (d)word chunks */
|
|
PTR_ADDU a3,a0,a3 /* a3 is the dst address after loop */
|
|
|
|
/* copying in words (4-byte or 8-byte chunks) */
|
|
L(wordCopy_loop):
|
|
C_LD REG3,UNIT(0)(a1)
|
|
PTR_ADDIU a0,a0,UNIT(1)
|
|
PTR_ADDIU a1,a1,UNIT(1)
|
|
bne a0,a3,L(wordCopy_loop)
|
|
C_ST REG3,UNIT(-1)(a0)
|
|
|
|
/* If we have been copying double words, see if we can copy a single word
|
|
before doing byte copies. We can have, at most, one word to copy. */
|
|
|
|
L(lastw):
|
|
#ifdef USE_DOUBLE
|
|
andi t8,a2,3 /* a2 is the remainder past 4 byte chunks. */
|
|
beq t8,a2,L(lastb)
|
|
move a2,t8
|
|
lw REG3,0(a1)
|
|
sw REG3,0(a0)
|
|
PTR_ADDIU a0,a0,4
|
|
PTR_ADDIU a1,a1,4
|
|
#endif
|
|
|
|
/* Copy the last 8 (or 16) bytes */
|
|
L(lastb):
|
|
blez a2,L(leave)
|
|
PTR_ADDU a3,a0,a2 /* a3 is the last dst address */
|
|
L(lastbloop):
|
|
lb v1,0(a1)
|
|
PTR_ADDIU a0,a0,1
|
|
PTR_ADDIU a1,a1,1
|
|
bne a0,a3,L(lastbloop)
|
|
sb v1,-1(a0)
|
|
L(leave):
|
|
j ra
|
|
nop
|
|
|
|
/* We jump here with a memcpy of less than 8 or 16 bytes, depending on
|
|
whether or not USE_DOUBLE is defined. Instead of just doing byte
|
|
copies, check the alignment and size and use lw/sw if possible.
|
|
Otherwise, do byte copies. */
|
|
|
|
L(lasts):
|
|
andi t8,a2,3
|
|
beq t8,a2,L(lastb)
|
|
|
|
andi t9,a0,3
|
|
bne t9,zero,L(lastb)
|
|
andi t9,a1,3
|
|
bne t9,zero,L(lastb)
|
|
|
|
PTR_SUBU a3,a2,t8
|
|
PTR_ADDU a3,a0,a3
|
|
|
|
L(wcopy_loop):
|
|
lw REG3,0(a1)
|
|
PTR_ADDIU a0,a0,4
|
|
PTR_ADDIU a1,a1,4
|
|
bne a0,a3,L(wcopy_loop)
|
|
sw REG3,-4(a0)
|
|
|
|
b L(lastb)
|
|
move a2,t8
|
|
|
|
#ifndef R6_CODE
|
|
/*
|
|
* UNALIGNED case, got here with a3 = "negu a0"
|
|
* This code is nearly identical to the aligned code above
|
|
* but only the destination (not the source) gets aligned
|
|
* so we need to do partial loads of the source followed
|
|
* by normal stores to the destination (once we have aligned
|
|
* the destination).
|
|
*/
|
|
|
|
L(unaligned):
|
|
andi a3,a3,(NSIZE-1) /* copy a3 bytes to align a0/a1 */
|
|
beqz a3,L(ua_chk16w) /* if a3=0, it is already aligned */
|
|
PTR_SUBU a2,a2,a3 /* a2 is the remining bytes count */
|
|
|
|
C_LDHI v1,UNIT(0)(a1)
|
|
C_LDLO v1,UNITM1(1)(a1)
|
|
PTR_ADDU a1,a1,a3
|
|
C_STHI v1,UNIT(0)(a0)
|
|
PTR_ADDU a0,a0,a3
|
|
|
|
/*
|
|
* Now the destination (but not the source) is aligned
|
|
* Set a2 to count how many bytes we have to copy after all the 64/128 byte
|
|
* chunks are copied and a3 to the dst pointer after all the 64/128 byte
|
|
* chunks have been copied. We will loop, incrementing a0 and a1 until a0
|
|
* equals a3.
|
|
*/
|
|
|
|
L(ua_chk16w):
|
|
andi t8,a2,NSIZEDMASK /* any whole 64-byte/128-byte chunks? */
|
|
beq a2,t8,L(ua_chkw) /* if a2==t8, no 64-byte/128-byte chunks */
|
|
PTR_SUBU a3,a2,t8 /* subtract from a2 the reminder */
|
|
PTR_ADDU a3,a0,a3 /* Now a3 is the final dst after loop */
|
|
|
|
# if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
|
|
PTR_ADDU t0,a0,a2 /* t0 is the "past the end" address */
|
|
PTR_SUBU t9,t0,PREFETCH_LIMIT /* t9 is the "last safe pref" address */
|
|
# endif
|
|
PREFETCH_FOR_LOAD (0, a1)
|
|
PREFETCH_FOR_LOAD (1, a1)
|
|
PREFETCH_FOR_LOAD (2, a1)
|
|
# if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT != PREFETCH_HINT_PREPAREFORSTORE)
|
|
PREFETCH_FOR_STORE (1, a0)
|
|
PREFETCH_FOR_STORE (2, a0)
|
|
PREFETCH_FOR_STORE (3, a0)
|
|
# endif
|
|
# if defined(RETURN_FIRST_PREFETCH) && defined(USE_PREFETCH)
|
|
# if (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
|
|
sltu v1,t9,a0
|
|
bgtz v1,L(ua_skip_set)
|
|
nop
|
|
PTR_ADDIU v0,a0,(PREFETCH_CHUNK*4)
|
|
L(ua_skip_set):
|
|
# else
|
|
PTR_ADDIU v0,a0,(PREFETCH_CHUNK*1)
|
|
# endif
|
|
# endif
|
|
L(ua_loop16w):
|
|
PREFETCH_FOR_LOAD (3, a1)
|
|
C_LDHI t0,UNIT(0)(a1)
|
|
C_LDHI t1,UNIT(1)(a1)
|
|
C_LDHI REG2,UNIT(2)(a1)
|
|
# if defined(USE_PREFETCH) && (PREFETCH_STORE_HINT == PREFETCH_HINT_PREPAREFORSTORE)
|
|
sltu v1,t9,a0
|
|
bgtz v1,L(ua_skip_pref)
|
|
# endif
|
|
C_LDHI REG3,UNIT(3)(a1)
|
|
PREFETCH_FOR_STORE (4, a0)
|
|
PREFETCH_FOR_STORE (5, a0)
|
|
L(ua_skip_pref):
|
|
C_LDHI REG4,UNIT(4)(a1)
|
|
C_LDHI REG5,UNIT(5)(a1)
|
|
C_LDHI REG6,UNIT(6)(a1)
|
|
C_LDHI REG7,UNIT(7)(a1)
|
|
C_LDLO t0,UNITM1(1)(a1)
|
|
C_LDLO t1,UNITM1(2)(a1)
|
|
C_LDLO REG2,UNITM1(3)(a1)
|
|
C_LDLO REG3,UNITM1(4)(a1)
|
|
C_LDLO REG4,UNITM1(5)(a1)
|
|
C_LDLO REG5,UNITM1(6)(a1)
|
|
C_LDLO REG6,UNITM1(7)(a1)
|
|
C_LDLO REG7,UNITM1(8)(a1)
|
|
PREFETCH_FOR_LOAD (4, a1)
|
|
C_ST t0,UNIT(0)(a0)
|
|
C_ST t1,UNIT(1)(a0)
|
|
C_ST REG2,UNIT(2)(a0)
|
|
C_ST REG3,UNIT(3)(a0)
|
|
C_ST REG4,UNIT(4)(a0)
|
|
C_ST REG5,UNIT(5)(a0)
|
|
C_ST REG6,UNIT(6)(a0)
|
|
C_ST REG7,UNIT(7)(a0)
|
|
C_LDHI t0,UNIT(8)(a1)
|
|
C_LDHI t1,UNIT(9)(a1)
|
|
C_LDHI REG2,UNIT(10)(a1)
|
|
C_LDHI REG3,UNIT(11)(a1)
|
|
C_LDHI REG4,UNIT(12)(a1)
|
|
C_LDHI REG5,UNIT(13)(a1)
|
|
C_LDHI REG6,UNIT(14)(a1)
|
|
C_LDHI REG7,UNIT(15)(a1)
|
|
C_LDLO t0,UNITM1(9)(a1)
|
|
C_LDLO t1,UNITM1(10)(a1)
|
|
C_LDLO REG2,UNITM1(11)(a1)
|
|
C_LDLO REG3,UNITM1(12)(a1)
|
|
C_LDLO REG4,UNITM1(13)(a1)
|
|
C_LDLO REG5,UNITM1(14)(a1)
|
|
C_LDLO REG6,UNITM1(15)(a1)
|
|
C_LDLO REG7,UNITM1(16)(a1)
|
|
PREFETCH_FOR_LOAD (5, a1)
|
|
C_ST t0,UNIT(8)(a0)
|
|
C_ST t1,UNIT(9)(a0)
|
|
C_ST REG2,UNIT(10)(a0)
|
|
C_ST REG3,UNIT(11)(a0)
|
|
C_ST REG4,UNIT(12)(a0)
|
|
C_ST REG5,UNIT(13)(a0)
|
|
C_ST REG6,UNIT(14)(a0)
|
|
C_ST REG7,UNIT(15)(a0)
|
|
PTR_ADDIU a0,a0,UNIT(16) /* adding 64/128 to dest */
|
|
bne a0,a3,L(ua_loop16w)
|
|
PTR_ADDIU a1,a1,UNIT(16) /* adding 64/128 to src */
|
|
move a2,t8
|
|
|
|
/* Here we have src and dest word-aligned but less than 64-bytes or
|
|
* 128 bytes to go. Check for a 32(64) byte chunk and copy if if there
|
|
* is one. Otherwise jump down to L(ua_chk1w) to handle the tail end of
|
|
* the copy. */
|
|
|
|
L(ua_chkw):
|
|
PREFETCH_FOR_LOAD (0, a1)
|
|
andi t8,a2,NSIZEMASK /* Is there a 32-byte/64-byte chunk. */
|
|
/* t8 is the reminder count past 32-bytes */
|
|
beq a2,t8,L(ua_chk1w) /* When a2=t8, no 32-byte chunk */
|
|
nop
|
|
C_LDHI t0,UNIT(0)(a1)
|
|
C_LDHI t1,UNIT(1)(a1)
|
|
C_LDHI REG2,UNIT(2)(a1)
|
|
C_LDHI REG3,UNIT(3)(a1)
|
|
C_LDHI REG4,UNIT(4)(a1)
|
|
C_LDHI REG5,UNIT(5)(a1)
|
|
C_LDHI REG6,UNIT(6)(a1)
|
|
C_LDHI REG7,UNIT(7)(a1)
|
|
C_LDLO t0,UNITM1(1)(a1)
|
|
C_LDLO t1,UNITM1(2)(a1)
|
|
C_LDLO REG2,UNITM1(3)(a1)
|
|
C_LDLO REG3,UNITM1(4)(a1)
|
|
C_LDLO REG4,UNITM1(5)(a1)
|
|
C_LDLO REG5,UNITM1(6)(a1)
|
|
C_LDLO REG6,UNITM1(7)(a1)
|
|
C_LDLO REG7,UNITM1(8)(a1)
|
|
PTR_ADDIU a1,a1,UNIT(8)
|
|
C_ST t0,UNIT(0)(a0)
|
|
C_ST t1,UNIT(1)(a0)
|
|
C_ST REG2,UNIT(2)(a0)
|
|
C_ST REG3,UNIT(3)(a0)
|
|
C_ST REG4,UNIT(4)(a0)
|
|
C_ST REG5,UNIT(5)(a0)
|
|
C_ST REG6,UNIT(6)(a0)
|
|
C_ST REG7,UNIT(7)(a0)
|
|
PTR_ADDIU a0,a0,UNIT(8)
|
|
/*
|
|
* Here we have less than 32(64) bytes to copy. Set up for a loop to
|
|
* copy one word (or double word) at a time.
|
|
*/
|
|
L(ua_chk1w):
|
|
andi a2,t8,(NSIZE-1) /* a2 is the reminder past one (d)word chunks */
|
|
beq a2,t8,L(ua_smallCopy)
|
|
PTR_SUBU a3,t8,a2 /* a3 is count of bytes in one (d)word chunks */
|
|
PTR_ADDU a3,a0,a3 /* a3 is the dst address after loop */
|
|
|
|
/* copying in words (4-byte or 8-byte chunks) */
|
|
L(ua_wordCopy_loop):
|
|
C_LDHI v1,UNIT(0)(a1)
|
|
C_LDLO v1,UNITM1(1)(a1)
|
|
PTR_ADDIU a0,a0,UNIT(1)
|
|
PTR_ADDIU a1,a1,UNIT(1)
|
|
bne a0,a3,L(ua_wordCopy_loop)
|
|
C_ST v1,UNIT(-1)(a0)
|
|
|
|
/* Copy the last 8 (or 16) bytes */
|
|
L(ua_smallCopy):
|
|
beqz a2,L(leave)
|
|
PTR_ADDU a3,a0,a2 /* a3 is the last dst address */
|
|
L(ua_smallCopy_loop):
|
|
lb v1,0(a1)
|
|
PTR_ADDIU a0,a0,1
|
|
PTR_ADDIU a1,a1,1
|
|
bne a0,a3,L(ua_smallCopy_loop)
|
|
sb v1,-1(a0)
|
|
|
|
j ra
|
|
nop
|
|
|
|
#else /* R6_CODE */
|
|
|
|
# ifdef __MIPSEB
|
|
# define SWAP_REGS(X,Y) X, Y
|
|
# define ALIGN_OFFSET(N) (N)
|
|
# else
|
|
# define SWAP_REGS(X,Y) Y, X
|
|
# define ALIGN_OFFSET(N) (NSIZE-N)
|
|
# endif
|
|
# define R6_UNALIGNED_WORD_COPY(BYTEOFFSET) \
|
|
andi REG7, a2, (NSIZE-1);/* REG7 is # of bytes to by bytes. */ \
|
|
beq REG7, a2, L(lastb); /* Check for bytes to copy by word */ \
|
|
PTR_SUBU a3, a2, REG7; /* a3 is number of bytes to be copied in */ \
|
|
/* (d)word chunks. */ \
|
|
move a2, REG7; /* a2 is # of bytes to copy byte by byte */ \
|
|
/* after word loop is finished. */ \
|
|
PTR_ADDU REG6, a0, a3; /* REG6 is the dst address after loop. */ \
|
|
PTR_SUBU REG2, a1, t8; /* REG2 is the aligned src address. */ \
|
|
PTR_ADDU a1, a1, a3; /* a1 is addr of source after word loop. */ \
|
|
C_LD t0, UNIT(0)(REG2); /* Load first part of source. */ \
|
|
L(r6_ua_wordcopy##BYTEOFFSET): \
|
|
C_LD t1, UNIT(1)(REG2); /* Load second part of source. */ \
|
|
C_ALIGN REG3, SWAP_REGS(t1,t0), ALIGN_OFFSET(BYTEOFFSET); \
|
|
PTR_ADDIU a0, a0, UNIT(1); /* Increment destination pointer. */ \
|
|
PTR_ADDIU REG2, REG2, UNIT(1); /* Increment aligned source pointer.*/ \
|
|
move t0, t1; /* Move second part of source to first. */ \
|
|
bne a0, REG6,L(r6_ua_wordcopy##BYTEOFFSET); \
|
|
C_ST REG3, UNIT(-1)(a0); \
|
|
j L(lastb); \
|
|
nop
|
|
|
|
/* We are generating R6 code, the destination is 4 byte aligned and
|
|
the source is not 4 byte aligned. t8 is 1, 2, or 3 depending on the
|
|
alignment of the source. */
|
|
|
|
L(r6_unaligned1):
|
|
R6_UNALIGNED_WORD_COPY(1)
|
|
L(r6_unaligned2):
|
|
R6_UNALIGNED_WORD_COPY(2)
|
|
L(r6_unaligned3):
|
|
R6_UNALIGNED_WORD_COPY(3)
|
|
# ifdef USE_DOUBLE
|
|
L(r6_unaligned4):
|
|
R6_UNALIGNED_WORD_COPY(4)
|
|
L(r6_unaligned5):
|
|
R6_UNALIGNED_WORD_COPY(5)
|
|
L(r6_unaligned6):
|
|
R6_UNALIGNED_WORD_COPY(6)
|
|
L(r6_unaligned7):
|
|
R6_UNALIGNED_WORD_COPY(7)
|
|
# endif
|
|
#endif /* R6_CODE */
|
|
|
|
.set at
|
|
.set reorder
|
|
END(MEMCPY_NAME)
|
|
#ifndef ANDROID_CHANGES
|
|
# ifdef _LIBC
|
|
libc_hidden_builtin_def (MEMCPY_NAME)
|
|
# endif
|
|
#endif
|