mirror of
https://sourceware.org/git/glibc.git
synced 2024-12-19 01:11:05 +00:00
43576de04a
With this patch, the maximal known error for tgamma is now reduced to 9 ulps for dbl-64, for all rounding modes. Since exhaustive testing is not possible for dbl-64, it might be that there are still cases with an error larger than 9 ulps, but all known cases are fixed (intensive tests were done to find cases with large errors). Tested on x86_64 and powerpc (and by Adhemerval Zanella on aarch64, arm, s390x, sparc, and i686). Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
240 lines
6.8 KiB
C
240 lines
6.8 KiB
C
/* Implementation of gamma function according to ISO C.
|
|
Copyright (C) 1997-2021 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1997.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, see
|
|
<https://www.gnu.org/licenses/>. */
|
|
|
|
#include <math.h>
|
|
#include <math-narrow-eval.h>
|
|
#include <math_private.h>
|
|
#include <fenv_private.h>
|
|
#include <math-underflow.h>
|
|
#include <float.h>
|
|
#include <libm-alias-finite.h>
|
|
#include <mul_split.h>
|
|
|
|
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) inside exp in Stirling's
|
|
approximation to gamma function. */
|
|
|
|
static const double gamma_coeff[] =
|
|
{
|
|
0x1.5555555555555p-4,
|
|
-0xb.60b60b60b60b8p-12,
|
|
0x3.4034034034034p-12,
|
|
-0x2.7027027027028p-12,
|
|
0x3.72a3c5631fe46p-12,
|
|
-0x7.daac36664f1f4p-12,
|
|
};
|
|
|
|
#define NCOEFF (sizeof (gamma_coeff) / sizeof (gamma_coeff[0]))
|
|
|
|
/* Return gamma (X), for positive X less than 184, in the form R *
|
|
2^(*EXP2_ADJ), where R is the return value and *EXP2_ADJ is set to
|
|
avoid overflow or underflow in intermediate calculations. */
|
|
|
|
static double
|
|
gamma_positive (double x, int *exp2_adj)
|
|
{
|
|
int local_signgam;
|
|
if (x < 0.5)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_exp (__ieee754_lgamma_r (x + 1, &local_signgam)) / x;
|
|
}
|
|
else if (x <= 1.5)
|
|
{
|
|
*exp2_adj = 0;
|
|
return __ieee754_exp (__ieee754_lgamma_r (x, &local_signgam));
|
|
}
|
|
else if (x < 6.5)
|
|
{
|
|
/* Adjust into the range for using exp (lgamma). */
|
|
*exp2_adj = 0;
|
|
double n = ceil (x - 1.5);
|
|
double x_adj = x - n;
|
|
double eps;
|
|
double prod = __gamma_product (x_adj, 0, n, &eps);
|
|
return (__ieee754_exp (__ieee754_lgamma_r (x_adj, &local_signgam))
|
|
* prod * (1.0 + eps));
|
|
}
|
|
else
|
|
{
|
|
double eps = 0;
|
|
double x_eps = 0;
|
|
double x_adj = x;
|
|
double prod = 1;
|
|
if (x < 12.0)
|
|
{
|
|
/* Adjust into the range for applying Stirling's
|
|
approximation. */
|
|
double n = ceil (12.0 - x);
|
|
x_adj = math_narrow_eval (x + n);
|
|
x_eps = (x - (x_adj - n));
|
|
prod = __gamma_product (x_adj - n, x_eps, n, &eps);
|
|
}
|
|
/* The result is now gamma (X_ADJ + X_EPS) / (PROD * (1 + EPS)).
|
|
Compute gamma (X_ADJ + X_EPS) using Stirling's approximation,
|
|
starting by computing pow (X_ADJ, X_ADJ) with a power of 2
|
|
factored out. */
|
|
double x_adj_int = round (x_adj);
|
|
double x_adj_frac = x_adj - x_adj_int;
|
|
int x_adj_log2;
|
|
double x_adj_mant = __frexp (x_adj, &x_adj_log2);
|
|
if (x_adj_mant < M_SQRT1_2)
|
|
{
|
|
x_adj_log2--;
|
|
x_adj_mant *= 2.0;
|
|
}
|
|
*exp2_adj = x_adj_log2 * (int) x_adj_int;
|
|
double h1, l1, h2, l2;
|
|
mul_split (&h1, &l1, __ieee754_pow (x_adj_mant, x_adj),
|
|
__ieee754_exp2 (x_adj_log2 * x_adj_frac));
|
|
mul_split (&h2, &l2, __ieee754_exp (-x_adj), sqrt (2 * M_PI / x_adj));
|
|
mul_expansion (&h1, &l1, h1, l1, h2, l2);
|
|
/* Divide by prod * (1 + eps). */
|
|
div_expansion (&h1, &l1, h1, l1, prod, prod * eps);
|
|
double exp_adj = x_eps * __ieee754_log (x_adj);
|
|
double bsum = gamma_coeff[NCOEFF - 1];
|
|
double x_adj2 = x_adj * x_adj;
|
|
for (size_t i = 1; i <= NCOEFF - 1; i++)
|
|
bsum = bsum / x_adj2 + gamma_coeff[NCOEFF - 1 - i];
|
|
exp_adj += bsum / x_adj;
|
|
/* Now return (h1+l1) * exp(exp_adj), where exp_adj is small. */
|
|
l1 += h1 * __expm1 (exp_adj);
|
|
return h1 + l1;
|
|
}
|
|
}
|
|
|
|
double
|
|
__ieee754_gamma_r (double x, int *signgamp)
|
|
{
|
|
int32_t hx;
|
|
uint32_t lx;
|
|
double ret;
|
|
|
|
EXTRACT_WORDS (hx, lx, x);
|
|
|
|
if (__glibc_unlikely (((hx & 0x7fffffff) | lx) == 0))
|
|
{
|
|
/* Return value for x == 0 is Inf with divide by zero exception. */
|
|
*signgamp = 0;
|
|
return 1.0 / x;
|
|
}
|
|
if (__builtin_expect (hx < 0, 0)
|
|
&& (uint32_t) hx < 0xfff00000 && rint (x) == x)
|
|
{
|
|
/* Return value for integer x < 0 is NaN with invalid exception. */
|
|
*signgamp = 0;
|
|
return (x - x) / (x - x);
|
|
}
|
|
if (__glibc_unlikely ((unsigned int) hx == 0xfff00000 && lx == 0))
|
|
{
|
|
/* x == -Inf. According to ISO this is NaN. */
|
|
*signgamp = 0;
|
|
return x - x;
|
|
}
|
|
if (__glibc_unlikely ((hx & 0x7ff00000) == 0x7ff00000))
|
|
{
|
|
/* Positive infinity (return positive infinity) or NaN (return
|
|
NaN). */
|
|
*signgamp = 0;
|
|
return x + x;
|
|
}
|
|
|
|
if (x >= 172.0)
|
|
{
|
|
/* Overflow. */
|
|
*signgamp = 0;
|
|
ret = math_narrow_eval (DBL_MAX * DBL_MAX);
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
SET_RESTORE_ROUND (FE_TONEAREST);
|
|
if (x > 0.0)
|
|
{
|
|
*signgamp = 0;
|
|
int exp2_adj;
|
|
double tret = gamma_positive (x, &exp2_adj);
|
|
ret = __scalbn (tret, exp2_adj);
|
|
}
|
|
else if (x >= -DBL_EPSILON / 4.0)
|
|
{
|
|
*signgamp = 0;
|
|
ret = 1.0 / x;
|
|
}
|
|
else
|
|
{
|
|
double tx = trunc (x);
|
|
*signgamp = (tx == 2.0 * trunc (tx / 2.0)) ? -1 : 1;
|
|
if (x <= -184.0)
|
|
/* Underflow. */
|
|
ret = DBL_MIN * DBL_MIN;
|
|
else
|
|
{
|
|
double frac = tx - x;
|
|
if (frac > 0.5)
|
|
frac = 1.0 - frac;
|
|
double sinpix = (frac <= 0.25
|
|
? __sin (M_PI * frac)
|
|
: __cos (M_PI * (0.5 - frac)));
|
|
int exp2_adj;
|
|
double h1, l1, h2, l2;
|
|
h2 = gamma_positive (-x, &exp2_adj);
|
|
mul_split (&h1, &l1, sinpix, h2);
|
|
/* sinpix*gamma_positive(.) = h1 + l1 */
|
|
mul_split (&h2, &l2, h1, x);
|
|
/* h1*x = h2 + l2 */
|
|
/* (h1 + l1) * x = h1*x + l1*x = h2 + l2 + l1*x */
|
|
l2 += l1 * x;
|
|
/* x*sinpix*gamma_positive(.) ~ h2 + l2 */
|
|
h1 = 0x3.243f6a8885a3p+0; /* binary64 approximation of Pi */
|
|
l1 = 0x8.d313198a2e038p-56; /* |h1+l1-Pi| < 3e-33 */
|
|
/* Now we divide h1 + l1 by h2 + l2. */
|
|
div_expansion (&h1, &l1, h1, l1, h2, l2);
|
|
ret = __scalbn (-h1, -exp2_adj);
|
|
math_check_force_underflow_nonneg (ret);
|
|
}
|
|
}
|
|
ret = math_narrow_eval (ret);
|
|
}
|
|
if (isinf (ret) && x != 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysign (DBL_MAX, ret) * DBL_MAX);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysign (DBL_MAX, ret) * DBL_MAX);
|
|
return ret;
|
|
}
|
|
else if (ret == 0)
|
|
{
|
|
if (*signgamp < 0)
|
|
{
|
|
ret = math_narrow_eval (-copysign (DBL_MIN, ret) * DBL_MIN);
|
|
ret = -ret;
|
|
}
|
|
else
|
|
ret = math_narrow_eval (copysign (DBL_MIN, ret) * DBL_MIN);
|
|
return ret;
|
|
}
|
|
else
|
|
return ret;
|
|
}
|
|
libm_alias_finite (__ieee754_gamma_r, __gamma_r)
|