mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-06 05:10:05 +00:00
41bdb6e20c
2001-07-06 Paul Eggert <eggert@twinsun.com> * manual/argp.texi: Remove ignored LGPL copyright notice; it's not appropriate for documentation anyway. * manual/libc-texinfo.sh: "Library General Public License" -> "Lesser General Public License". 2001-07-06 Andreas Jaeger <aj@suse.de> * All files under GPL/LGPL version 2: Place under LGPL version 2.1.
334 lines
10 KiB
C
334 lines
10 KiB
C
/* Prototype declarations for math functions; helper file for <math.h>.
|
|
Copyright (C) 1996,1997,1998,1999,2000,2001 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
|
|
The GNU C Library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
The GNU C Library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with the GNU C Library; if not, write to the Free
|
|
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
|
|
02111-1307 USA. */
|
|
|
|
/* NOTE: Because of the special way this file is used by <math.h>, this
|
|
file must NOT be protected from multiple inclusion as header files
|
|
usually are.
|
|
|
|
This file provides prototype declarations for the math functions.
|
|
Most functions are declared using the macro:
|
|
|
|
__MATHCALL (NAME,[_r], (ARGS...));
|
|
|
|
This means there is a function `NAME' returning `double' and a function
|
|
`NAMEf' returning `float'. Each place `_Mdouble_' appears in the
|
|
prototype, that is actually `double' in the prototype for `NAME' and
|
|
`float' in the prototype for `NAMEf'. Reentrant variant functions are
|
|
called `NAME_r' and `NAMEf_r'.
|
|
|
|
Functions returning other types like `int' are declared using the macro:
|
|
|
|
__MATHDECL (TYPE, NAME,[_r], (ARGS...));
|
|
|
|
This is just like __MATHCALL but for a function returning `TYPE'
|
|
instead of `_Mdouble_'. In all of these cases, there is still
|
|
both a `NAME' and a `NAMEf' that takes `float' arguments.
|
|
|
|
Note that there must be no whitespace before the argument passed for
|
|
NAME, to make token pasting work with -traditional. */
|
|
|
|
#ifndef _MATH_H
|
|
#error "Never include <bits/mathcalls.h> directly; include <math.h> instead."
|
|
#endif
|
|
|
|
|
|
/* Trigonometric functions. */
|
|
|
|
/* Arc cosine of X. */
|
|
__MATHCALL (acos,, (_Mdouble_ __x));
|
|
/* Arc sine of X. */
|
|
__MATHCALL (asin,, (_Mdouble_ __x));
|
|
/* Arc tangent of X. */
|
|
__MATHCALL (atan,, (_Mdouble_ __x));
|
|
/* Arc tangent of Y/X. */
|
|
__MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x));
|
|
|
|
/* Cosine of X. */
|
|
__MATHCALL (cos,, (_Mdouble_ __x));
|
|
/* Sine of X. */
|
|
__MATHCALL (sin,, (_Mdouble_ __x));
|
|
/* Tangent of X. */
|
|
__MATHCALL (tan,, (_Mdouble_ __x));
|
|
|
|
#ifdef __USE_GNU
|
|
/* Cosine and sine of X. */
|
|
__MATHDECL (void,sincos,,
|
|
(_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx));
|
|
#endif
|
|
|
|
/* Hyperbolic functions. */
|
|
|
|
/* Hyperbolic cosine of X. */
|
|
__MATHCALL (cosh,, (_Mdouble_ __x));
|
|
/* Hyperbolic sine of X. */
|
|
__MATHCALL (sinh,, (_Mdouble_ __x));
|
|
/* Hyperbolic tangent of X. */
|
|
__MATHCALL (tanh,, (_Mdouble_ __x));
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Hyperbolic arc cosine of X. */
|
|
__MATHCALL (acosh,, (_Mdouble_ __x));
|
|
/* Hyperbolic arc sine of X. */
|
|
__MATHCALL (asinh,, (_Mdouble_ __x));
|
|
/* Hyperbolic arc tangent of X. */
|
|
__MATHCALL (atanh,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
/* Exponential and logarithmic functions. */
|
|
|
|
/* Exponential function of X. */
|
|
__MATHCALL (exp,, (_Mdouble_ __x));
|
|
|
|
#ifdef __USE_GNU
|
|
/* A function missing in all standards: compute exponent to base ten. */
|
|
__MATHCALL (exp10,, (_Mdouble_ __x));
|
|
/* Another name occasionally used. */
|
|
__MATHCALL (pow10,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
/* Break VALUE into a normalized fraction and an integral power of 2. */
|
|
__MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent));
|
|
|
|
/* X times (two to the EXP power). */
|
|
__MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent));
|
|
|
|
/* Natural logarithm of X. */
|
|
__MATHCALL (log,, (_Mdouble_ __x));
|
|
|
|
/* Base-ten logarithm of X. */
|
|
__MATHCALL (log10,, (_Mdouble_ __x));
|
|
|
|
/* Break VALUE into integral and fractional parts. */
|
|
__MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr));
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return exp(X) - 1. */
|
|
__MATHCALL (expm1,, (_Mdouble_ __x));
|
|
|
|
/* Return log(1 + X). */
|
|
__MATHCALL (log1p,, (_Mdouble_ __x));
|
|
|
|
/* Return the base 2 signed integral exponent of X. */
|
|
__MATHCALL (logb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Compute base-2 exponential of X. */
|
|
__MATHCALL (exp2,, (_Mdouble_ __x));
|
|
|
|
/* Compute base-2 logarithm of X. */
|
|
__MATHCALL (log2,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
|
|
/* Power functions. */
|
|
|
|
/* Return X to the Y power. */
|
|
__MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
/* Return the square root of X. */
|
|
__MATHCALL (sqrt,, (_Mdouble_ __x));
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC99
|
|
/* Return `sqrt(X*X + Y*Y)'. */
|
|
__MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
#endif
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return the cube root of X. */
|
|
__MATHCALL (cbrt,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
|
|
/* Nearest integer, absolute value, and remainder functions. */
|
|
|
|
/* Smallest integral value not less than X. */
|
|
__MATHCALL (ceil,, (_Mdouble_ __x));
|
|
|
|
/* Absolute value of X. */
|
|
__MATHCALLX (fabs,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Largest integer not greater than X. */
|
|
__MATHCALL (floor,, (_Mdouble_ __x));
|
|
|
|
/* Floating-point modulo remainder of X/Y. */
|
|
__MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
|
|
/* Return 0 if VALUE is finite or NaN, +1 if it
|
|
is +Infinity, -1 if it is -Infinity. */
|
|
__MATHDECL_1 (int,__isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
/* Return nonzero if VALUE is finite and not NaN. */
|
|
__MATHDECL_1 (int,__finite,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
#ifdef __USE_MISC
|
|
/* Return 0 if VALUE is finite or NaN, +1 if it
|
|
is +Infinity, -1 if it is -Infinity. */
|
|
__MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
/* Return nonzero if VALUE is finite and not NaN. */
|
|
__MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
/* Return the remainder of X/Y. */
|
|
__MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
|
|
/* Return the fractional part of X after dividing out `ilogb (X)'. */
|
|
__MATHCALL (significand,, (_Mdouble_ __x));
|
|
#endif /* Use misc. */
|
|
|
|
#if defined __USE_MISC || defined __USE_ISOC99
|
|
/* Return X with its signed changed to Y's. */
|
|
__MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return representation of NaN for double type. */
|
|
__MATHCALLX (nan,, (__const char *__tagb), (__const__));
|
|
#endif
|
|
|
|
|
|
/* Return nonzero if VALUE is not a number. */
|
|
__MATHDECL_1 (int,__isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN
|
|
/* Return nonzero if VALUE is not a number. */
|
|
__MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__));
|
|
|
|
/* Bessel functions. */
|
|
__MATHCALL (j0,, (_Mdouble_));
|
|
__MATHCALL (j1,, (_Mdouble_));
|
|
__MATHCALL (jn,, (int, _Mdouble_));
|
|
__MATHCALL (y0,, (_Mdouble_));
|
|
__MATHCALL (y1,, (_Mdouble_));
|
|
__MATHCALL (yn,, (int, _Mdouble_));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC99
|
|
/* Error and gamma functions. */
|
|
__MATHCALL (erf,, (_Mdouble_));
|
|
__MATHCALL (erfc,, (_Mdouble_));
|
|
__MATHCALL (lgamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
__MATHCALL (tgamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN
|
|
/* Obsolete alias for `lgamma'. */
|
|
__MATHCALL (gamma,, (_Mdouble_));
|
|
#endif
|
|
|
|
#ifdef __USE_MISC
|
|
/* Reentrant version of lgamma. This function uses the global variable
|
|
`signgam'. The reentrant version instead takes a pointer and stores
|
|
the value through it. */
|
|
__MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp));
|
|
#endif
|
|
|
|
|
|
#if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99
|
|
/* Return the integer nearest X in the direction of the
|
|
prevailing rounding mode. */
|
|
__MATHCALL (rint,, (_Mdouble_ __x));
|
|
|
|
/* Return X + epsilon if X < Y, X - epsilon if X > Y. */
|
|
__MATHCALLX (nextafter,, (_Mdouble_ __x, _Mdouble_ __y), (__const__));
|
|
# ifdef __USE_ISOC99
|
|
__MATHCALLX (nexttoward,, (_Mdouble_ __x, long double __y), (__const__));
|
|
# endif
|
|
|
|
/* Return the remainder of integer divison X / Y with infinite precision. */
|
|
__MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
# if defined __USE_MISC || defined __USE_XOPEN_EXTENDED
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n));
|
|
# endif
|
|
|
|
# if defined __USE_MISC || defined __USE_ISOC99
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalbn,, (_Mdouble_ __x, int __n));
|
|
# endif
|
|
|
|
/* Return the binary exponent of X, which must be nonzero. */
|
|
__MATHDECL (int,ilogb,, (_Mdouble_ __x));
|
|
#endif
|
|
|
|
#ifdef __USE_ISOC99
|
|
/* Return X times (2 to the Nth power). */
|
|
__MATHCALL (scalbln,, (_Mdouble_ __x, long int __n));
|
|
|
|
/* Round X to integral value in floating-point format using current
|
|
rounding direction, but do not raise inexact exception. */
|
|
__MATHCALL (nearbyint,, (_Mdouble_ __x));
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
__MATHCALL (round,, (_Mdouble_ __x));
|
|
|
|
/* Round X to the integral value in floating-point format nearest but
|
|
not larger in magnitude. */
|
|
__MATHCALLX (trunc,, (_Mdouble_ __x), (__const__));
|
|
|
|
/* Compute remainder of X and Y and put in *QUO a value with sign of x/y
|
|
and magnitude congruent `mod 2^n' to the magnitude of the integral
|
|
quotient x/y, with n >= 3. */
|
|
__MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo));
|
|
|
|
|
|
/* Conversion functions. */
|
|
|
|
/* Round X to nearest integral value according to current rounding
|
|
direction. */
|
|
__MATHDECL (long int,lrint,, (_Mdouble_ __x));
|
|
__MATHDECL (long long int,llrint,, (_Mdouble_ __x));
|
|
|
|
/* Round X to nearest integral value, rounding halfway cases away from
|
|
zero. */
|
|
__MATHDECL (long int,lround,, (_Mdouble_ __x));
|
|
__MATHDECL (long long int,llround,, (_Mdouble_ __x));
|
|
|
|
|
|
/* Return positive difference between X and Y. */
|
|
__MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
/* Return maximum numeric value from X and Y. */
|
|
__MATHCALL (fmax,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
/* Return minimum numeric value from X and Y. */
|
|
__MATHCALL (fmin,, (_Mdouble_ __x, _Mdouble_ __y));
|
|
|
|
|
|
/* Classify given number. */
|
|
__MATHDECL_1 (int, __fpclassify,, (_Mdouble_ __value))
|
|
__attribute__ ((__const__));
|
|
|
|
/* Test for negative number. */
|
|
__MATHDECL_1 (int, __signbit,, (_Mdouble_ __value))
|
|
__attribute__ ((__const__));
|
|
|
|
|
|
/* Multiply-add function computed as a ternary operation. */
|
|
__MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z));
|
|
#endif /* Use ISO C99. */
|